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Constructor university - Real analysis Tutorial I 06.09.24

Metric spaces

Let (X, d) be a metric space.

Problem I.1: Open and closed sets
Let z € X and r > 0.
Prove that open balls B(x,r) := {y € X|d(x,y) < r} are opened.
Prove that closed balls CB(z,r) = {y € X|d(x,y) < r} are closed.
Provide an example of a metric space and a ball for which CB(z,r) # B(z, 7).
Prove that open sets are stable under countable unions and finite intersections.
Provide an example of a non opened countable intersection of open sets.

Prove that closed sets are stable under countable intersections and finite unions.

No ot W

Provide an example of a non closed countable union of closed sets.

Problem 1.2: Basic properties

1. Prove that (X, d) is first countable, i.e.: Vz € X,3(O,)nen a family of open neighbourhoods of
x such that if U is an open neighbourhood of z, then In € N|O,, < U.

2. Prove that (X, d) is separated (also called Hausdorff), i.e.: Va,y € X, U,V respectively open
neighbourhoods of  and y such that Y NV = .

Problem 1.3: Cutoff metric
Let a > 0 and define Yz,y € X, d'(z,y) = min(«, d(z, y)).
1. Prove that d' is a metric on X.

2. Prove that d and d’ give rise to the same topology.

Problem I.4: Completeness (*)
Prove that R? is complete and that Q it not.

Problem I.5: Separability (*)
(X, d) is said to be separable if there exists a dense countable subset.

(X, d) is said to be second countable if these exists a countable family 7 of open sets such that
every open set is a countable union of elements in 7.

1. Prove that (X, d) is separable <= (X, d) is second countable.

2. Prove that the set of bounded real sequences [* is not separable.

Problem 1.6: Normal spaces (**)

1. Urysohn lemma: let A, B be two disjoint closed subsets of X, prove that there exists a continuous
function f: X — [0, 1] such that A = f~1({0}) and B = f~!({1}).

2. Deduce that (X, d) is normal, i.e.: every two disjoint closed sets have disjoint open neighbour-
hoods.

*. Bonus problem 2
**: Bonus and harder problem
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Point set topology

Problem II.1: A bit more about metric spaces
Let (X, d) be a metric space.
1. Prove that (X, d) is separated (Hausdorff).
2. Prove that (X, d) is first countable.
3. Prove that (X,d) is separable <= (X, d) is second countable.

Problem II1.2: Topological basis
Let (X, T) be a topological space with a topological basis 5. Let O c X, prove that
OeT < YreO,WU,epflxel, cO.

Problem II.3: G sets

A G set is a countable intersection of open sets. Prove that in a first countable 77 topological
space singletons are G sets.

Problem II.4: Co-finite topology
Let X be an infinite set and 7 = {O < X|O° is finite } U {T}.
1. Prove that (X, 7T) is a topological space.

2. Let (z,)nen © X be a sequence of distinct elements, prove that

Vee X,x, — =
n—0oo

3. Is the co-finite topology separated?
We now assume that X = R.
4. Prove that closed sets are 0 of polynomials (this is what we call Zariski’s topology).

5. Compute the interior and the closure of [0, 1] and Z.

Problem II1.5: Co-countable topology (*)
Let X be an infinite set and 7 = {O < X|O¢ is countable } U {}.
1. Prove that (X, 7T) is a topological space.
2. Prove that the co-countable topology is stronger than the co-finite topology.
3. Under which condition do we have equality between these two topology?

4. Prove that X uncountable = (X,7) is not first-countable.

Problem I1.6: Lexicographic order topology (**)

Let (X, <) be an ordered space. The order topology on X, denoted T, is the topology generated
by open intervals.

1. Prove that 7T is the set of unions of open intervals.

2. Check that the order topology of the usual order on R is the usual topology.

*. Bonus problem 3
**: Bonus and harder problem
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We introduce the lexicographic order on R?: (z,y) < (zg,y0) if © < xg or (x = z¢ and y < yo).
3. Prove that < is total.
4. Draw the open intervals ((0,1),(1,0)) and ((0,1), (0,2)).
5. Prove that (R? 7<) is not separable.
6. Let O < R?, prove that

OeTc < Vo eR 0, = {yeR|(z,y) € O} is open in the usual topology of R.

7. Prove that vertical lines are clopen (close and open).

*. Bonus problem 4
**: Bonus and harder problem
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Continuous functions & compactness I

Problem III.1: Density
Let X,Y be a topological spaces, assume that Y is Hausdorff and ¢, f : X — Y continuous.
1. Prove that A == {z € X|f(z) = g(x)} is closed.
2. Prove that A dense = f = g.

Problem III.2: Quotient topology

Let (X,7T) be a topological space, ~ an equivalence relation on X and 7 : 2 € X — [z] ==
{ye Xt ~a} e X/~ Weset T.={0 c X/~|r"1(O) e T}

1. Prove that 7. is a topology.

2. Let A ¢ X define A. = {x € X|Jy € X|z ~ y}. Prove that 7 is an open map if and only if
YVAcT,A.eT.

3. Let Z be a topological space. Prove that a map g : X/ ~— Z is continuous if and only if
gom: X — Z is continuous.

4. Let f: X — Z be a continuous map such that z ~y = f(z) = f(y). Prove that there
exists a unique continuous map f : X/ ~— Z such that for = f.

5. Prove that the above property, along with the continuity of 7, characterises the quotient
topology.

6. Let A < X. The collapsing of X onto A refers to the space X/ ~, where ~ is the equivalence
relation generated by x ~ y for every pair (x,y) € A% Describe the sphere S? as the collapsing
of a space onto a suitable subspace.

Problem III.3: Compactness in term of close sets

Let (K, T) be a topological space. Prove that K is compact if and only if for all family of closed
sets (F)ier,

e

(VJcIﬁnite,ﬂE;é@> — ﬂFﬁs@.

el

Problem III.4: A characterisation of continuity (*)

Let X, Y be topological spaces and f : X — Y. Prove that f is continuous if and only if
VAc X, f(A) < f(A).

Problem III.5: Diagonal extraction (**)

We consider the metric space C = [0, 1]N with the metric

d(z,y) = Z 27" xn — Yal-

neN

Prove that C' is sequentially compact.

*. Bonus problem 5
**: Bonus and harder problem
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Continuous functions & compactness II

Problem IV.1:
Let f: (X, Tx) — (Y, Ty) between two topological spaces.

1. Let x € X, prove that if f is continuous at x then

v($n)neNCX7$n - T = f(xn) - f($>

2. Prove the converse proposition assuming that X is first countable.

3. We assume that f is continuous, injective and that Y is Hausdorff, prove that X is Hausdorff.

Problem IV.2: Homeomorphism
Let f:R™ — R™ be a continuous bijection such that lim,j_o | f(2)| = 0.
1. Prove that YK < R™ compact, f~!(K) is compact.
2. Let C' < R™ closed, prove that f(C) is closed.

3. Conclude that f is a homeomorphism.

Problem IV.3: Application of the Arzela—Ascoli theorem
Let f e C([0,1]) and K € C([0,1] x [0, 1]), define

Vo e [0,1), T (x) = f K, 9)f(y)dy.

1. Prove that T'f is continuous.

2. Prove that {T'f, f € C([0,1])]sup,epo |/ (x)] <1} is relatively compact (i.e. has compact
closure) in C([0, 1]).

Problem IV.4: First Dini theorem (*)

Let K be a compact metric space and (f,), a sequence of functions in C°(K,R) that converges
pointwise to a function f continuous on K.

1. Suppose that the sequence (f,,), is increasing. Prove that the convergence is uniform.

2. Application: Prove that ¢ — +/ is the uniform limit of polynomials P on [0,1]. Hint: Use the
sequence Py = 0, P,y1(t) = Po(t) + 5(t — P2(t)).

Problem IV.5: Compactness in metric spaces (**) Prove that compactness is equivalent
to sequential compactness in metric spaces.

*. Bonus problem 6
**: Bonus and harder problem



Constructor university - Real analysis Tutorial V 04.10.24
Arzela—Ascoli theorem & Banach spaces

Problem V.1: Non compactness of closed balls in infinite dimensions

Prove that B(0,1) is not compact in {*(C).

Problem V.2: Holder continuity
Let (X, d) be a compact metric space, f € C(X,C) is called Holder continuous of exponent o > 0
if

Nuo(f) = sup ——F———— <.
(f) z,yeX, Y d(x, y)a

Prove that K == {f € C(X,C)|| f]|, <1 and N,(f) <1} is compact in C(X,C).

Problem V.3: Application with integral kernel
Let f e C([0,1],R) and K € C([0,1] x [0, 1],R), define Vz € [0,1], T f(x) = Sé K(z,y)f(y)dy.
1. Prove that T'f is continuous.
2. Prove that {T'f, f € C([0,1],R)||| f]|, < 1} is relatively compact in C([0, 1],R).
3. Prove that if K <1 then T has a fixed point.

Problem V.4: Complete functional spaces

1. Let X,Y be two Banach space. Prove that C(X,Y) is complete with respect to the uniform
norm.

2. Prove that C == {f € C([0,1],R)|f(0) = 1} is closed in C([0,1],R).

Problem V.5: (*)

Let f e C([0,1],R) and K € C([0,1] x [0,1],R), define Yz € [0,1],Tf(x) == S(l) K(x,y)f(y)*dy.
Prove that T has a fixed point.

Problem V.6: Compactness in Banach spaces (**)

1. Let E be a Banach space and X a subset of E. Prove that X is compact if and only if X is
closed, bounded, and for every € > 0, there exists a finite-dimensional vector subspace F. of
such that d(z, F.) < ¢ for every x € X.

Hint: a metric space is compact if and only if it is totally bounded and complete.
2. A subset A of [*(N) is said to be equisummable if
Ve > 0,IN > 0,V(zn)nen € A, Y |an| <.

n=N

Prove that a subset A of I'(N) is compact if and only if it is closed, bounded, and equisummable.
Provide an example.

*. Bonus problem 7
**: Bonus and harder problem
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Banach spaces

Problem VI.1: Evaluation map

Let X, Y be normed vector spaces and £(X,Y") denote the space of continuous linear maps, prove
that

LIX)Y) x X - Y
T , x — Tx

1S continuous.

Problem VI.2:
Let L < C([0,1],R) be the subspace consisting of Lipschitz functions.
Is (L,| - [lso) complete?
What about the set of 1-Lipschitz functions?

Prove that N(f) = | fle + SUP,yeron] <‘ f(@)=1 ()

=y

) defines a norm on L.

Prove that (L, N) is complete.
Prove that C*([0, 1], R) is complete with respect to the norm | f]| = | fllew + [ /'] c0-

AN A e

Problem VI1.3:
1. Find a continuous linear map f : R — R that is not open.
2. Find a continuous surjective map f : R — R that is not open.

3. Let RN be the space of real sequences that are null except for a finite number of terms, equipped
with the norm || - |,. Verify that this normed vector space is not complete, and find a bijective,
continuous map 7' € £L(R™)) whose inverse is not continuous.

*. Bonus problem 8
**: Bonus and harder problem
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Banach spaces 1I: Hahn-Banach Theorem

Problem VII.1: Dual norm
Let E be a Banach space.
1. Let = € E, prove that

2]l z = sup{e(x), ¢ € E*| |@llpx < 1}.
2. We assume that E is reflexive. Let ¢ € E*, deduce that 3z € E such that ||¢|| 5« = ¢(z).

Problem VII.2: [! is not reflexive

Prove that [*(R) < [®(R)*, meaning that there exists T € [*(R)* which is not of the following
form

I*(R) — R
(yn)neN g anyn

with (2,)nen € H(R).

Problem VII.3: Functional vanishing on a subspace

Let X = {f € C([0,1],R)|f(0) = 0} and C be the subset of C([0,1],R) made up of constant

functions.
1. Prove that C([0,1],R) = X &®C.
2. Prove that 3F € C([0, 1], R)* such that Fjx =0 and Vce C,c # 0 — F(c) # 0.

Hint: consider the evaluation at 0.

Problem VII.4: Density and duality (*)

Let U be a dense subspace of a normed vector space X. Prove that U* and X™* are isometrically
isomorphic.

*. Bonus problem 9
**: Bonus and harder problem
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Banach spaces III: uniform boundedness & open mapping
theorem

Problem IX.1: Continuity via duality

Let E and F be two Banach spaces, and let T' : E — F be a linear map. We assume that
Ve F* poT e E*. Prove that T is continuous.

Hint: use the fact that Vr € E

|Tz||z=  sup  o(Tz).
P F* ||| i <1

Problem IX.2: Open mapping theorem

Let F and F be two Banach spaces, and let T € L.(E, F'). Prove that the following two statements
are equivalent:

1. There exists @ > 0 such that for all z € E, |Tz| > ofx|.

2. T is injective and has closed range.

Problem IX.3: Dual of [P

Let F and F' be two Banach spaces. Let (T},) be a sequence of continuous linear maps from E to
F such that, Yz € E, (T,,x),en converges to a limit denoted T'z.

1. Prove that the mapping x — Tz is linear.
2. Prove that sup ||T},|| < 4. Deduce that 7' is continuous.
neN

3. Prove that
| 7| < liminf ||T5,]].
n—+00

Let 1 < p,q < +o0 be real numbers such that 1/p+ 1/q = 1. Let (a,)nen be a sequence of complex
numbers such that for every sequence (b, ),en in 7(C), the series Y’ |a,b,| converges.

4. Viewing

rC) —» C

T: _
(b’ﬂ)nGN — Zanbn

as a pointwise limit, deduce that T is continuous.
5. Prove that (a,)nen € €4(C).

Hint: consider by = |an|"" s(ay) 1oy where s is the sign function defined as s(z) = Lz

Problem IX.4: (*)

Let E be a Banach space and F' and GG two closed subspaces of E. We assume that F' and G are
algebraic complements, i.e.
F+G=E, FnG={0}.

Prove that F' and G are topological complements, i.e. that the projections associated with the sum
are continuous.

*. Bonus problem 10
**: Bonus and harder problem
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Problem IX.5: (**)

Let K be a compact subset of R®. Consider a norm N on the space C°(K,R) that makes it
complete and satisfies the condition that any sequence of functions (f,) in C°(K,R) that converges in
the norm N also converges pointwise to the same limit. Prove that the norm N is then equivalent to
the supremum norm, i.e.

Jer, e > 0,Vf € CUK,R), aN(f) <|fle < e2N(f).

*. Bonus problem 11
**: Bonus and harder problem
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Hilbert spaces

Problem X.1: Projections

Let H be a Hilbert space and C' a closed convex subset of H. We denote by pc the orthogonal
projection onto C, and let v and v be elements of H.

1. Prove that v = po(u) if and only if v € C' and {u — v,c —v) < 0 for all ¢ in C.
2. Prove that p¢ is 1-Lipschitz continuous.

3. Prove that (pc(u) — pe(v),u —v) = 0.

Problem X.2: Countable basis
1. Prove that a Hilbert space is separable if and only if there exists a countable Hilbert basis.

2. (*) Prove that a vector space of infinite dimension with a countable algebraic basis cannot be
equipped with a norm that makes it complete.

Problem X.3: Geometric forms of the Hahn Banach theorem (**)
Let A and B be two disjoint convex subsets of a Hilbert space H.
1. Assume that A is closed and let = ¢ A. Prove that there exists ¢ € H* such that sup, ¢ < ¢(z).
2. Prove that if A is compact and B is closed, there exists ¢ € H* such that sup, ¢ < infp ¢.
3. Prove that if A is open, there exists ¢ € H*\{0} such that sup, ¢ < infp ¢.

*. Bonus problem 12
**: Bonus and harder problem
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Lebesgue spaces

15.11.24

Problem XI.1: Shift operator
1. Prove that the shift operator:

It — 12

(un)neN - (0, Ug, Ug, - - - )

S

is a bounded linear map and compute Compute ||S||.

2. Compute the adjoint S* as a linear map [?> — [® and compute ||.S*||.

Problem XI.2:
Let p1 < p < po < 400, prove that LP < LP* 4 LP2.
Hint: Let A >0, f € L, and consider fa == f1jf<a.

Problem XI.3: Separability (**)
Let 1 < p < 4w, let a <beR, prove that LP([a,b]) is separable.

*. Bonus problem 13
**: Bonus and harder problem
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Weak convergence

Problem XII.1:
Let (E,||-]|) be a Banach space and (z,,)nen < F such that z, -z € E.
1. Prove that (z,,)nen is bounded with respect to |||
Hint: consider the canonical injection of E into E** and use uniform boundedness.
2. Deduce that a weakly compact subset A — F is bounded with respect to ||-||.
3. Prove that

1 n

—Zxk — I.
n—0o0

o

Problem XII.2:
1. Let ¢ € CP(R) be smooth and compactly supported function. Prove that

n+1

J go(a:)dxnjooo.
2. Deduce that 1p, 417 — 0 in L*(R).
3. Does this convergence holds in ||.||,?

4. Admitting the fact that (ey : z — e*™),.7 is a Hilbert basis of L*([0,1],C), prove that
sin(27n-) —0 in L?([0, 1], C).

Hint: Use Parseval’s identity.

*. Bonus problem 14
**: Bonus and harder problem
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Thomas-Fermi functional

Let V e L*(R?,R),w € L'(R% R) such that |Jw||, <1 and

w(v) = fw(m)e%m"mdx > 0.

R2

We aim to minimise to following functional:

B(p) = [ fa)ds + | Vizh@de + | [l ~ ppply)dzdy,

R2 R2 R2 R2

with

peD:= < pe L*(R* R,) such that Jp(m)dm =1

R2

Denote

Eo = inf B{p)-

1. Prove that [[(w + p)pl, < [l llol

2. Deduce that E is well defined and that Ey < +oo0.
3. Prove that Va,be R,Ve > 0,ab < ‘;—i + 6%.
4. Prove that

1 V15
——(2B(p) + 12}
1= flwlly ( 1 — [lw]y

Let (pn)nen be a minimising sequence of £ in D, meaning that

2
lpll; <

n—00

5. Prove that, up to an extraction, 3y € L?(R% R) such that

Pn — H.

n—o0

6. Prove that

n—0o0

fﬁ@m+JV@M@m<mmm.Lm@m+fw@%@m

R2 2

7. Prove that

[+ w)@hta)de < timint [ (.« w)2)pu(ods

n—0oo
R2 R2

*. Bonus problem 15
**: Bonus and harder problem
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What we previously obtained still remains valid if we only assume that the negative part of V'
satisfy V_ € L*(R% R). Now, we additionally assume that

V(z) — oo.
|z|—00

8. (*) Prove that

and deduce that for r > 0,

2E(p)

1:(: T d S -
f g p(iL‘) o 1nf‘m|>T V(.Z‘)

R

9. (*) Prove that ||ul|, =1
10. (*) Conclude that p € D and that p is a minimizer of E.

*. Bonus problem 16
**: Bonus and harder problem
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Topological, metric, Banach, Hilbert & Lebesgue spaces

Problem 1: Hausdorff spaces
1. Provide an example of a non-Hausdorff topological space.
2. Prove that metric spaces are Hausdorff.
Let X be a Hausdorff topological space.
3. We assume that X is compact. Prove that we can separate a closed set from a point, meaning:
VF < X closed, Vo e F°, 34U,V open such that r e Y, F < Vand U NV = .

4. Same question with X metrizable.

Problem 2: Distance to a set

Let (X, d) be a metric space. We define the distance from z € X to A < X as
d(z, A) == inf d(z, a).
acA

1. Prove that d(-, A) is 1-Lipschitz.
2. Prove that A is closed if and only if Vo € X,d(z,A) =0 = z € A,

Problem 3: Bounded linear maps

Decide for which topological spaces X,Y € {(C([-1,1]),||Il..), (L*([-1,1]),-l,)} the map
X — Y

T (0 20)

is a bounded linear map and compute |7y y) when it is the case.

Problem 4: A characterization of the uniform topology

Let K be a compact subset of R” and N a complete norm on C(K,R) such that any sequence
of functions (f,,)nen in C(K,R) that converges in the norm A also converges pointwise to the same
limit. We aim to prove that A is then equivalent to the uniform norm, i.e.

dc1, ¢o > 0 such that Vf e C(K,R), el N(f) < | fllu < 2N (f).

Let x € K, we consider the evaluation map

7 (CKRLN) — R

f — flz)
1. Prove that T} is continuous.
2. Prove that sup,.x || T%| < +.
3. Prove that |||, < sup,e | T[] NV
4. Deduce that
 (CIER)N) = (CKR), [,
f - f
is a continuous bijection.
*. Bonus problem 17

**: Bonus and harder problem
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5. Conclude that N and |||, are equivalent.

Problem 5: Polarization identity

Let H be a complex pre-Hilbert space with (-, ), its inner product linear in the second variable

end skew linear in the first variable. Denote Vo € H, ||z||; = +/{x, ).

1. Prove the polarization identity:

2 2 . . 2 . . 2
Va,ye H(x,yy =~ (lz+ylly — le —yll5 —ille + iyl + i |z — iyl3)

P

2. Assume that (H, [|]|) is a normed vector space with ||-|| satisfying the parallelogram law, prove
that there exists a Hermitian inner product (-,-) on H such that Yz € H, ||z| = 1/{x,x).

Problem 6: Lebesgue spaces
1. Let a < b, prove that L*([a, b]) is not separable.
2. Let = (x,)nen € [ (R), prove that

I'(R) — R

(I)(I) : Y = (yn)neN — <x,y> = ZneN LnlYn

e I'(R)*

3. Prove that @ : [*(R) — [*(R)* is an isometry.

*. Bonus problem 18
**: Bonus and harder problem
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