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Constructor university - Real analysis Tutorial I 06.09.24

Metric spaces

Let pX, dq be a metric space.

Problem I.1: Open and closed sets

Let x P X and r ą 0.

1. Prove that open balls Bpx, rq – ty P X|dpx, yq ă ru are opened.

2. Prove that closed balls CBpx, rq – ty P X|dpx, yq ď ru are closed.

3. Provide an example of a metric space and a ball for which CBpx, rq ‰ Bpx, rq.

4. Prove that open sets are stable under countable unions and finite intersections.

5. Provide an example of a non opened countable intersection of open sets.

6. Prove that closed sets are stable under countable intersections and finite unions.

7. Provide an example of a non closed countable union of closed sets.

Problem I.2: Basic properties

1. Prove that pX, dq is first countable, i.e.: @x P X, DpOnqnPN a family of open neighbourhoods of
x such that if U is an open neighbourhood of x, then Dn P N|On Ă U .

2. Prove that pX, dq is separated (also called Hausdorff), i.e.: @x, y P X, DU ,V respectively open
neighbourhoods of x and y such that U X V “ H.

Problem I.3: Cutoff metric

Let α ą 0 and define @x, y P X, d1px, yq “ minpα, dpx, yqq.

1. Prove that d1 is a metric on X.

2. Prove that d and d1 give rise to the same topology.

Problem I.4: Completeness (*)

Prove that Rd is complete and that Q it not.

Problem I.5: Separability (*)

pX, dq is said to be separable if there exists a dense countable subset.

pX, dq is said to be second countable if these exists a countable family T of open sets such that
every open set is a countable union of elements in T .

1. Prove that pX, dq is separable ðñ pX, dq is second countable.

2. Prove that the set of bounded real sequences l8 is not separable.

Problem I.6: Normal spaces (**)

1. Urysohn lemma: let A,B be two disjoint closed subsets of X, prove that there exists a continuous
function f : X Ñ r0, 1s such that A “ f´1pt0uq and B “ f´1pt1uq.

2. Deduce that pX, dq is normal, i.e.: every two disjoint closed sets have disjoint open neighbour-
hoods.

*: Bonus problem
**: Bonus and harder problem
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Point set topology

Problem II.1: A bit more about metric spaces

Let pX, dq be a metric space.

1. Prove that pX, dq is separated (Hausdorff).

2. Prove that pX, dq is first countable.

3. Prove that pX, dq is separable ðñ pX, dq is second countable.

Problem II.2: Topological basis

Let pX, T q be a topological space with a topological basis β. Let O Ă X, prove that

O P T ðñ @x P O, DUx P β|x P Ux Ă O.

Problem II.3: Gδ sets

A Gδ set is a countable intersection of open sets. Prove that in a first countable T1 topological
space singletons are Gδ sets.

Problem II.4: Co-finite topology

Let X be an infinite set and T – tO Ă X|Oc is finite u Y tHu.

1. Prove that pX, T q is a topological space.

2. Let pxnqnPN Ă X be a sequence of distinct elements, prove that

@x P X, xn Ñ
nÑ8

x.

3. Is the co-finite topology separated?

We now assume that X – R.

4. Prove that closed sets are 0 of polynomials (this is what we call Zariski’s topology).

5. Compute the interior and the closure of r0, 1s and Z.

Problem II.5: Co-countable topology (*)

Let X be an infinite set and T – tO Ă X|Oc is countable u Y tHu.

1. Prove that pX, T q is a topological space.

2. Prove that the co-countable topology is stronger than the co-finite topology.

3. Under which condition do we have equality between these two topology?

4. Prove that X uncountable ùñ pX, T q is not first-countable.

Problem II.6: Lexicographic order topology (**)

Let pX,ďq be an ordered space. The order topology on X, denoted Tď, is the topology generated
by open intervals.

1. Prove that Tď is the set of unions of open intervals.

2. Check that the order topology of the usual order on R is the usual topology.

*: Bonus problem
**: Bonus and harder problem
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We introduce the lexicographic order on R2: px, yq ď px0, y0q if x ă x0 or px “ x0 and y ď y0q.

3. Prove that ď is total.

4. Draw the open intervals pp0, 1q, p1, 0qq and pp0, 1q, p0, 2qq.

5. Prove that pR2, Tďq is not separable.

6. Let O Ă R2, prove that

O P Tď ðñ @x P R,Ox – ty P R|px, yq P Ou is open in the usual topology of R.

7. Prove that vertical lines are clopen (close and open).

*: Bonus problem
**: Bonus and harder problem
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Continuous functions & compactness I

Problem III.1: Density

Let X, Y be a topological spaces, assume that Y is Hausdorff and g, f : X Ñ Y continuous.

1. Prove that A – tx P X|fpxq “ gpxqu is closed.

2. Prove that A dense ùñ f “ g.

Problem III.2: Quotient topology

Let pX, T q be a topological space, „ an equivalence relation on X and π : x P X ÞÑ rxs –

ty P X|t „ xu P X{„. We set T„ – tO Ă X{„|π´1pOq P T u.

1. Prove that T„ is a topology.

2. Let A Ă X define A„ – tx P X|Dy P X|x „ yu. Prove that π is an open map if and only if
@A Ă T , A„ P T .

3. Let Z be a topological space. Prove that a map g : X{ „ÝÑ Z is continuous if and only if
g ˝ π : X ÝÑ Z is continuous.

4. Let f : X ÝÑ Z be a continuous map such that x „ y ùñ fpxq “ fpyq. Prove that there
exists a unique continuous map f̄ : X{ „ÝÑ Z such that f̄ ˝ π “ f .

5. Prove that the above property, along with the continuity of π, characterises the quotient
topology.

6. Let A Ă X. The collapsing of X onto A refers to the space X{ „, where „ is the equivalence
relation generated by x „ y for every pair px, yq P A2. Describe the sphere S2 as the collapsing
of a space onto a suitable subspace.

Problem III.3: Compactness in term of close sets

Let pK, T q be a topological space. Prove that K is compact if and only if for all family of closed
sets pFiqiPI ,

˜

@J Ă I finite,
č

iPJ

Fi ‰ H

¸

ùñ
č

iPI

Fi ‰ H.

Problem III.4: A characterisation of continuity (*)

Let X, Y be topological spaces and f : X Ñ Y . Prove that f is continuous if and only if
@A Ă X, fpAq Ă fpAq.

Problem III.5: Diagonal extraction (**)

We consider the metric space C – r0, 1sN with the metric

dpx, yq “
ÿ

nPN

2´n|xn ´ yn|.

Prove that C is sequentially compact.

*: Bonus problem
**: Bonus and harder problem
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Continuous functions & compactness II

Problem IV.1:

Let f : pX, TXq Ñ pY, TY q between two topological spaces.

1. Let x P X, prove that if f is continuous at x then

@pxnqnPN Ă X, xn Ñ
nÑ8

x ùñ fpxnq Ñ
nÑ8

fpxq.

2. Prove the converse proposition assuming that X is first countable.

3. We assume that f is continuous, injective and that Y is Hausdorff, prove that X is Hausdorff.

Problem IV.2: Homeomorphism

Let f : Rn Ñ Rn be a continuous bijection such that lim}x}Ñ`8 }fpxq} “ `8.

1. Prove that @K Ă Rn compact, f´1pKq is compact.

2. Let C Ă Rn closed, prove that fpCq is closed.

3. Conclude that f is a homeomorphism.

Problem IV.3: Application of the Arzelà–Ascoli theorem

Let f P Cpr0, 1sq and K P Cpr0, 1s ˆ r0, 1sq, define

@x P r0, 1s, T fpxq –

1
ż

0

Kpx, yqfpyqdy.

1. Prove that Tf is continuous.

2. Prove that
␣

Tf, f P Cpr0, 1sq| supxPr0,1s |fpxq| ď 1
(

is relatively compact (i.e. has compact
closure) in Cpr0, 1sq.

Problem IV.4: First Dini theorem (*)

Let K be a compact metric space and pfnqn a sequence of functions in C0pK,Rq that converges
pointwise to a function f continuous on K.

1. Suppose that the sequence pfnqn is increasing. Prove that the convergence is uniform.

2. Application: Prove that t ÞÑ
?
t is the uniform limit of polynomials P on r0, 1s. Hint: Use the

sequence P0 “ 0, Pn`1ptq “ Pnptq ` 1
2
pt ´ P 2

nptqq.

Problem IV.5: Compactness in metric spaces (**) Prove that compactness is equivalent
to sequential compactness in metric spaces.

*: Bonus problem
**: Bonus and harder problem
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Arzelà–Ascoli theorem & Banach spaces

Problem V.1: Non compactness of closed balls in infinite dimensions

Prove that Bp0, 1q is not compact in l8pCq.

Problem V.2: Hölder continuity

Let pX, dq be a compact metric space, f P CpX,Cq is called Hölder continuous of exponent α ą 0
if

Nαpfq – sup
x,yPX,x‰y

|fpxq ´ fpyq|

dpx, yqα
ă 8.

Prove that K – tf P CpX,Cq| ∥f∥u ď 1 and Nαpfq ď 1u is compact in CpX,Cq.

Problem V.3: Application with integral kernel

Let f P Cpr0, 1s,Rq and K P Cpr0, 1s ˆ r0, 1s,Rq, define @x P r0, 1s, T fpxq –
ş1

0
Kpx, yqfpyqdy.

1. Prove that Tf is continuous.

2. Prove that tTf, f P Cpr0, 1s,Rq| ∥f∥u ď 1u is relatively compact in Cpr0, 1s,Rq.

3. Prove that if K ď 1 then T has a fixed point.

Problem V.4: Complete functional spaces

1. Let X, Y be two Banach space. Prove that CpX, Y q is complete with respect to the uniform
norm.

2. Prove that C – tf P Cpr0, 1s,Rq|fp0q “ 1u is closed in Cpr0, 1s,Rq.

Problem V.5: (*)

Let f P Cpr0, 1s,Rq and K P Cpr0, 1s ˆ r0, 1s,Rq, define @x P r0, 1s, T fpxq –
ş1

0
Kpx, yqfpyq2dy.

Prove that T has a fixed point.

Problem V.6: Compactness in Banach spaces (**)

1. Let E be a Banach space and X a subset of E. Prove that X is compact if and only if X is
closed, bounded, and for every ε ą 0, there exists a finite-dimensional vector subspace Fε of E
such that dpx, Fεq ă ε for every x P X.

Hint : a metric space is compact if and only if it is totally bounded and complete.

2. A subset A of l1pNq is said to be equisummable if

@ε ą 0, DN ě 0, @pxnqnPN P A,
ÿ

něN

|xn| ă ε.

Prove that a subset A of l1pNq is compact if and only if it is closed, bounded, and equisummable.
Provide an example.

*: Bonus problem
**: Bonus and harder problem
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Banach spaces

Problem VI.1: Evaluation map

Let X, Y be normed vector spaces and LpX, Y q denote the space of continuous linear maps, prove
that

LpX, Y q ˆ X Ñ Y
T , x ÞÑ Tx

is continuous.

Problem VI.2:

Let L Ă Cpr0, 1s,Rq be the subspace consisting of Lipschitz functions.

1. Is pL, } ¨ }8q complete?

2. What about the set of 1-Lipschitz functions?

3. Prove that Npfq – }f}8 ` supx‰yPr0,1s

´
ˇ

ˇ

ˇ

fpxq´fpyq

x´y

ˇ

ˇ

ˇ

¯

defines a norm on L.

4. Prove that pL,Nq is complete.

5. Prove that C1pr0, 1s,Rq is complete with respect to the norm }f} – }f}8 ` }f 1}8.

Problem VI.3:

1. Find a continuous linear map f : R Ñ R that is not open.

2. Find a continuous surjective map f : R Ñ R that is not open.

3. Let RpNq be the space of real sequences that are null except for a finite number of terms, equipped
with the norm } ¨ }8. Verify that this normed vector space is not complete, and find a bijective,
continuous map T P LpRpNqq whose inverse is not continuous.

*: Bonus problem
**: Bonus and harder problem
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Banach spaces II: Hahn-Banach Theorem

Problem VII.1: Dual norm

Let E be a Banach space.

1. Let x P E, prove that

∥x∥E “ suptφpxq, φ P E˚
| }φ}E˚ ď 1u.

2. We assume that E is reflexive. Let φ P E˚, deduce that Dx P E such that ∥φ∥E˚ “ φpxq.

Problem VII.2: l1 is not reflexive

Prove that l1pRq Ĺ l8pRq˚, meaning that there exists T P l8pRq˚ which is not of the following
form

l8pRq Ñ R
pynqnPN ÞÑ

ř

xnyn

with pxnqnPN P l1pRq.

Problem VII.3: Functional vanishing on a subspace

Let X – tf P Cpr0, 1s,Rq|fp0q “ 0u and C be the subset of Cpr0, 1s,Rq made up of constant
functions.

1. Prove that Cpr0, 1s,Rq “ X ‘ C.

2. Prove that DF P Cpr0, 1s,Rq˚ such that F|X “ 0 and @c P C, c ‰ 0 ùñ F pcq ‰ 0.

Hint: consider the evaluation at 0.

Problem VII.4: Density and duality (*)

Let U be a dense subspace of a normed vector space X. Prove that U˚ and X˚ are isometrically
isomorphic.

*: Bonus problem
**: Bonus and harder problem
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Banach spaces III: uniform boundedness & open mapping
theorem

Problem IX.1: Continuity via duality

Let E and F be two Banach spaces, and let T : E Ñ F be a linear map. We assume that
@φ P F ˚, φ ˝ T P E˚. Prove that T is continuous.

Hint: use the fact that @x P E

∥Tx∥F “ sup
φPF˚,∥φ∥F˚ ď1

φpTxq.

Problem IX.2: Open mapping theorem

Let E and F be two Banach spaces, and let T P LcpE,F q. Prove that the following two statements
are equivalent:

1. There exists α ą 0 such that for all x P E, }Tx} ě α}x}.

2. T is injective and has closed range.

Problem IX.3: Dual of lp

Let E and F be two Banach spaces. Let pTnq be a sequence of continuous linear maps from E to
F such that, @x P E, pTnxqnPN converges to a limit denoted Tx.

1. Prove that the mapping x ÞÑ Tx is linear.

2. Prove that sup
nPN

||Tn|| ă `8. Deduce that T is continuous.

3. Prove that
||T || ď lim inf

nÑ`8
||Tn||.

Let 1 ă p, q ă `8 be real numbers such that 1{p ` 1{q “ 1. Let panqnPN be a sequence of complex
numbers such that for every sequence pbnqnPN in ℓppCq, the series

ř

|anbn| converges.

4. Viewing

T :
ℓppCq Ñ C

pbnqnPN ÞÑ
ř

anbn

as a pointwise limit, deduce that T is continuous.

5. Prove that panqnPN P ℓqpCq.

Hint: consider bn – |an|
q´1 spanq1nďN where s is the sign function defined as spzq – z

|z|
1z‰0.

Problem IX.4: (*)

Let E be a Banach space and F and G two closed subspaces of E. We assume that F and G are
algebraic complements, i.e.

F ` G “ E, F X G “ t0u.

Prove that F and G are topological complements, i.e. that the projections associated with the sum
are continuous.

*: Bonus problem
**: Bonus and harder problem
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Problem IX.5: (**)

Let K be a compact subset of Rn. Consider a norm N on the space C0pK,Rq that makes it
complete and satisfies the condition that any sequence of functions pfnq in C0pK,Rq that converges in
the norm N also converges pointwise to the same limit. Prove that the norm N is then equivalent to
the supremum norm, i.e.

Dc1, c2 ą 0, @f P C0
pK,Rq, c1Npfq ď }f}8 ď c2Npfq.

*: Bonus problem
**: Bonus and harder problem
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Hilbert spaces

Problem X.1: Projections

Let H be a Hilbert space and C a closed convex subset of H. We denote by pC the orthogonal
projection onto C, and let u and v be elements of H.

1. Prove that v “ pCpuq if and only if v P C and xu ´ v, c ´ vy ď 0 for all c in C.

2. Prove that pC is 1-Lipschitz continuous.

3. Prove that xpCpuq ´ pCpvq, u ´ vy ě 0.

Problem X.2: Countable basis

1. Prove that a Hilbert space is separable if and only if there exists a countable Hilbert basis.

2. (*) Prove that a vector space of infinite dimension with a countable algebraic basis cannot be
equipped with a norm that makes it complete.

Problem X.3: Geometric forms of the Hahn Banach theorem (**)

Let A and B be two disjoint convex subsets of a Hilbert space H.

1. Assume that A is closed and let x R A. Prove that there exists ϕ P H‹ such that supA ϕ ă ϕpxq.

2. Prove that if A is compact and B is closed, there exists ϕ P H‹ such that supA ϕ ă infB ϕ.

3. Prove that if A is open, there exists ϕ P H‹zt0u such that supA ϕ ď infB ϕ.

*: Bonus problem
**: Bonus and harder problem
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Lebesgue spaces

Problem XI.1: Shift operator

1. Prove that the shift operator:

S :
l1 Ñ l2

punqnPN Ñ p0, u0, u1, . . . q

is a bounded linear map and compute Compute ∥S∥.
2. Compute the adjoint S˚ as a linear map l2 Ñ l8 and compute ∥S˚∥.

Problem XI.2:

Let p1 ď p ď p2 ď `8, prove that Lp Ă Lp1 ` Lp2 .

Hint: Let Λ ą 0, f P Lp, and consider fΛ – f1|f |ďΛ.

Problem XI.3: Separability (**)

Let 1 ď p ă `8, let a ă b P R, prove that Lppra, bsq is separable.

*: Bonus problem
**: Bonus and harder problem
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Weak convergence

Problem XII.1:

Let pE, ∥¨∥q be a Banach space and pxnqnPN Ă E such that xn áx P E.

1. Prove that pxnqnPN is bounded with respect to ∥¨∥.
Hint: consider the canonical injection of E into E˚˚ and use uniform boundedness.

2. Deduce that a weakly compact subset A Ă E is bounded with respect to ∥¨∥.
3. Prove that

1

n

n
ÿ

k“1

xk á
nÑ8

x.

Problem XII.2:

1. Let φ P C8
c pRq be smooth and compactly supported function. Prove that

n`1
ż

n

φpxqdx Ñ
nÑ8

0.

2. Deduce that 1rn,n`1s á 0 in L2pRq.

3. Does this convergence holds in ∥.∥2?
4. Admitting the fact that pek : x ÞÑ e2iπkxqkPZ is a Hilbert basis of L2pr0, 1s,Cq, prove that

sinp2πn¨q á 0 in L2pr0, 1s,Cq.

Hint: Use Parseval’s identity.

*: Bonus problem
**: Bonus and harder problem
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Thomas-Fermi functional

Let V P L2pR2,Rq, w P L1pR2,Rq such that ∥w∥1 ă 1 and

ŵpνq –

ż

R2

wpxqe´2iπν¨xdx ě 0.

We aim to minimise to following functional:

Epρq –

ż

R2

ρ2pxqdx `

ż

R2

V pxqρpxqdx `

ż

R2

ż

R2

wpx ´ yqρpxqρpyqdxdy.

with

ρ P D –

$

&

%

ρ P L2
pR2,R`q such that

ż

R2

ρpxqdx “ 1

,

.

-

.

Denote

E0 “ inf
ρPD

Epρq.

1. Prove that ∥pw ‹ ρqρ∥1 ď ∥w∥1 ∥ρ∥
2
2.

2. Deduce that E is well defined and that E0 ă `8.

3. Prove that @a, b P R, @ϵ ą 0, ab ď a2

2ϵ
` ϵ b

2

2
.

4. Prove that

∥ρ∥22 ď
1

1 ´ ∥w∥1

˜

2Epρq `
∥V ∥22

1 ´ ∥w∥1

¸

.

Let pρnqnPN be a minimising sequence of E in D, meaning that

Epρnq Ñ
nÑ8

E0.

5. Prove that, up to an extraction, Dµ P L2pR2,Rq such that

ρn á
nÑ8

µ.

6. Prove that

ż

R2

µ2
pxqdx `

ż

R2

V pxqµpxqdx ď lim inf
nÑ8

¨

˝

ż

R2

ρ2npxqdx `

ż

R2

V pxqρnpxqdx

˛

‚.

7. Prove that
ż

R2

pµ ‹ wqpxqµpxqdx ď lim inf
nÑ8

ż

R2

pρn ‹ wqpxqρnpxqdx

*: Bonus problem
**: Bonus and harder problem
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What we previously obtained still remains valid if we only assume that the negative part of V
satisfy V´ P L2pR2,Rq. Now, we additionally assume that

V pxq Ñ
|x|Ñ8

8.

8. (*) Prove that
ż

R

V pxqρpxqdx ď Epρq

and deduce that for r ą 0,
ż

R

1xąrρpxqdx ď
2Epρq

inf |x|ąr V pxq
.

9. (*) Prove that ∥µ∥1 “ 1

10. (*) Conclude that µ P D and that µ is a minimizer of E.

*: Bonus problem
**: Bonus and harder problem
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Constructor university - Real analysis Homework Due on 29.11.12

Topological, metric, Banach, Hilbert & Lebesgue spaces

Problem 1: Hausdorff spaces

1. Provide an example of a non-Hausdorff topological space.

2. Prove that metric spaces are Hausdorff.

Let X be a Hausdorff topological space.

3. We assume that X is compact. Prove that we can separate a closed set from a point, meaning:

@F Ă X closed, @x P F c, DU ,V open such that x P U , F Ă V and U X V “ H.

4. Same question with X metrizable.

Problem 2: Distance to a set

Let pX, dq be a metric space. We define the distance from x P X to A Ă X as

dpx,Aq – inf
aPA

dpx, aq.

1. Prove that dp¨, Aq is 1-Lipschitz.

2. Prove that A is closed if and only if @x P X, dpx,Aq “ 0 ùñ x P A.

Problem 3: Bounded linear maps

Decide for which topological spaces X, Y P tpCpr´1, 1sq, ∥¨∥uq, pL2pr´1, 1sq, ∥¨∥2qu the map

T :
X Ñ Y

f ÞÑ

ˆ

r´1, 1s Ñ R
x ÞÑ fpx2q

˙

is a bounded linear map and compute ∥T∥LpX,Y q
when it is the case.

Problem 4: A characterization of the uniform topology

Let K be a compact subset of Rn and N a complete norm on CpK,Rq such that any sequence
of functions pfnqnPN in CpK,Rq that converges in the norm N also converges pointwise to the same
limit. We aim to prove that N is then equivalent to the uniform norm, i.e.

Dc1, c2 ą 0 such that @f P CpK,Rq, c1N pfq ď }f}u ď c2N pfq.

Let x P K, we consider the evaluation map

Tx :
pCpK,Rq,N q Ñ R

f ÞÑ fpxq
.

1. Prove that Tx is continuous.

2. Prove that supxPK ∥Tx∥ ă `8.

3. Prove that ∥¨∥u ď supxPK ∥Tx∥N
4. Deduce that

i :
pCpK,Rq,N q Ñ pCpK,Rq, ∥¨∥uq

f ÞÑ f

is a continuous bijection.

*: Bonus problem
**: Bonus and harder problem
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5. Conclude that N and ∥¨∥u are equivalent.

Problem 5: Polarization identity

Let H be a complex pre-Hilbert space with x¨, ¨yH its inner product linear in the second variable
end skew linear in the first variable. Denote @x P H, ∥x∥H –

a

xx, xyH .

1. Prove the polarization identity:

@x, y P H, xx, yyH “
1

4

`

∥x ` y∥2H ´ ∥x ´ y∥2H ´ i ∥x ` iy∥2H ` i ∥x ´ iy∥2H
˘

2. Assume that pH, ∥¨∥q is a normed vector space with ∥¨∥ satisfying the parallelogram law, prove
that there exists a Hermitian inner product x¨, ¨y on H such that @x P H, ∥x∥ “

a

xx, xy.

Problem 6: Lebesgue spaces

1. Let a ă b, prove that L8pra, bsq is not separable.

2. Let x – pxnqnPN P l8pRq, prove that

Φpxq :
l1pRq Ñ R

y – pynqnPN ÞÑ xx, yy –
ř

nPN xnyn
P l1pRq

˚

3. Prove that Φ : l8pRq Ñ l1pRq˚ is an isometry.

*: Bonus problem
**: Bonus and harder problem
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