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Constructor university - Real analysis Tutorial I 07.02.25

Set theory and topology

Problem I.1: Sets and functions

Let f : E Ñ F a function. Let also A, B Ď E and P , Q Ď F . Determine whether the following
statements are true. If the statement is false provide a necessary and sufficient condition on f for
the statement to be true. (i.e whether f needs to be injective, surjective etc.). Ac is the complement
of the set A in E. f´1pAq is the pre-image of the set A.

1. fpA Y Bq “ fpAq Y fpBq

2. fpA X Bq “ fpAq X fpBq

3. fpAcq “ fpAqc

4. f´1pP Y Qq “ f´1pP q Y f´1pQq

5. f´1pP X Qq “ f´1pQq X f´1pQq

6. f´1pP cq “ f´1pP qc

Problem I.2: De Morgan’s laws

Let I be a set and pAiqiPI a family of sets.

1. Prove that
˜

č

iPI

Ai

¸c

“
ď

iPI

Ac
i .

2. Prove that
˜

ď

iPI

Ai

¸c

“
č

iPI

Ac
i .

Problem I.3: Open sets on Rn

For any x P Rn and r ą 0, the open ball of radius r around x is defined as Brpxq “ ty P

Rn : dpx, yq ă ru, where dpx, yq “
a

řn
i“1 |xi ´ yi|2. Let τ1 “

!

Ť

px,rqPF Brpxq : F Ď Rn ˆ p0,8q

)

and τ2 “ tO Ď Rn : @y P O Dr ą 0 such that Brpyq Ă Ou.

1. Prove that τ1 “ τ2.

2. Let N P N and let pOkqNk“1 be a finite collection of sets in τ1. Prove that
ŞN

k“1Ok P τ1.

3. Let I be an arbitrary index set and let pOkqkPI be a collection of elements in τ1. Prove that
Ť

kPI Ok P τ1.

Problem I.4: Open sets on R (*)

Prove that an open set in R (in the standard topology) is a countable union of open intervals.

Hint: Use that fact that for any x P R and r ą 0, Q X Brpxq ‰ H.

*: Bonus problem
**: Bonus and harder problem
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Constructor university - Real analysis Tutorial II Due for 14.02.2025

Sigma-Algebras

Problem II.1: (2p)

Provide an explicit counter-example to show that, in general, the union of two σ-algebras A1 and
A2 is not a σ-algebra.

Problem II.2: (6p)

In the lecture, the Borel σ-algebra BpRq was introduced as the σ-algebra generated by the open
sets τ Ă PpRq. Let E “ tpa, bq : a, b P Q , a ă bu be the set of open intervals with rational endpoints.
Prove that BpRq “ σpEq. This shows that BpRq can be generated by a countable set.

Problem II.3: (4p)

Let M be an uncountably infinite set and let A “ σpttmu Ă M : m P Muq. Prove that A “

tA Ă M : A is countable or Ac is countableu

Problem II.4: (4p)

Let f : E Ñ F a function.

1. Let A = tf´1pBq | B P Bu where B is a σ-algebra on F .
Is A a σ-algebra on E?

2. Let B = tfpAq | A P Au where A is a σ-algebra on E.
Is B a σ-algebra on F?

Problem II.5: (4p)

Show whether the following are valid σ-algebras on the set X.

1. The σ-algebra formed by the sets A Ă X such that either A or Ac is finite.

2. The σ-algebra formed by the sets A Ă X such that either A or Ac is countable.

*: Bonus problem
**: Bonus and harder problem
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Constructor university - Real analysis Tutorial III Due for 28.02.2025

Measures

Problem III.1: (2p)

Let pX,Aq be a measurable space and a P X. Define δa : A Ñ R` by δapAq “ 1 if a P A and
δapAq “ 0 else. Show that δa is a measure on pX,Aq.

Problem III.2: (4p+4p)

Let (X, A, µ) be a measure space. The purpose of this exercise is to prove the so-called
inclusion-exclusion formulas: Let n P N and A1, A2, . . . , An P A such that µp

Ťn
k“1Akq ă 8. Prove

that:

1.

µ

˜

n
ď

k“1

Ak

¸

“

n
ÿ

k“1

p´1q
k´1

ÿ

ti1,...,ikuĂt1,...,nu

µ

˜

k
č

j“1

Aij

¸

.

2.

µ

˜

n
č

k“1

Ak

¸

“

n
ÿ

k“1

p´1q
k´1

ÿ

ti1,...,ikuĂt1,...,nu

µ

˜

k
ď

j“1

Aij

¸

.

Here, the summation is over all subsets of t1, . . . , nu with k elements.

Hint: Use mathematical induction over n.

Problem III.3: (2p+4p+4p)

Let pX,A, µq be a measure space and let pAnqnPN be a collection of elements in A. Put

A˚
“ lim sup

nÑ8

An “

8
č

n“1

8
ď

m“n

Am.

1. Suppose that
ř8

n“1 µpAnq ă 8. Prove that µpA˚q “ 0.

2. Now suppose that µ is a probability measure, i.e. µpXq “ 1. A collection pBnqnPN of elements
in A is called independent if

µ

˜

č

jPJ

Bj

¸

“
ź

jPJ

µpBjq,

for any finite J Ă N. Prove that independence of pBnqnPN implies independence of pBc
nqnPN.

Hint: Use the inclusion-exclusion formula.

3. Suppose that pAnqnPN are independent and
ř8

n“1 µpAnq “ 8. Prove that µpA˚q “ 1.
Hint: Compute µppA˚qcq. You can use that lnp1 ´ xq ď ´x for x P r0, 1s.

*: Bonus problem
**: Bonus and harder problem
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Constructor university - Real analysis Tutorial III Due for 28.02.2025

Problem III.4: (*)(2p+3p)

Recall that in the lecture, the outer Lebesgue measure l˚ : PpRq Ñ R was defined as

l˚pMq :“ inf
pan,bnqnPNPIpMq

ÿ

nPN

pbn ´ anq,

where IpMq “ tpan, bnqnPN : an ď bn and M Ă
Ť

nPNpan, bnqu is the set of coverings of M Ă R through
countably many open intervals.

1. Let B be the set of all rational numbers in the interval r0, 1s, and let tIkunk“1 be a finite collection
of open intervals that covers B. Prove that

řn
k“1 l

˚pIkq ě 1.

2. Let A be the set of all irrational numbers in the interval r0, 1s. Prove that l˚pAq “ 1.
Hint: Begin by showing that the rational numbers in the interval r0, 1s have outer measure 0.

*: Bonus problem
**: Bonus and harder problem
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Constructor university - Real analysis Tutorial IV Due for 07.03.2025

The Lebesgue Measure

Problem IV.1: (1p+1p+2p+2p+2p)

The aim of this exercise is to construct Vitali sets, which are an example of non Lebesgue
measurable sets. The construction depends on the axiom of choice. Define a relation „ on R by

x „ y : ðñ x ´ y P Q.

1. Show that „ is an equivalence relation.

2. The equivalence classes of R under „ are called cosets of Q in R and are denoted by R{Q. Show
that r0, 1s X A ‰ H for all A P R{Q.

3. A set V Ă r0, 1s is a Vitali set if contains exactly a single point from each coset of Q in R. The
axiom of choice guarantees the existence of such sets. Show that the sets q ` V where q P Q are
disjoint. Here q ` V refers to a translation of V by q.

4. Let V Ă r0, 1s be a Vitali set and C “ Q X r´1, 1s.
Now consider

U “
ď

qPC

pV ` qq.

Show that r0, 1s Ă U Ă r´1, 2s.

5. Conclude that V is not measurable.
Hint: A countable sum of some constant is either 0 or infinite.

Problem IV.2: (3p+3p)

Let µ be a measure on pR,LpRqq with µpr0, 1sq “ 1 and let l be the Lebesgue measure.

1. Suppose that µpa ` Mq “ µpMq for all M P LpRq and a P R. Show that µ “ l.

2. Suppose that µpλMq “ |λ|µpMq for all M P LpRq and λ P R. Show that µ “ l.

Problem IV.3: (3p+3p)

1. Prove that the Lebesgue measure is outer regular, that is, show that for any A P LpRq

lpAq “ inftlpUq : A Ă U and U openu.

2. Prove that the Lebesgue measure is inner regular, that is, show that for any A P LpRq

lpAq “ suptlpKq : K Ă A and K compactu.

*: Bonus problem
**: Bonus and harder problem
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Constructor university - Real analysis Tutorial V In Class 14/03/2025

Non-Borel measurable set

The purpose of this exercise is to construct a set that is Lebesgue - but not Borel - measurable.
To do so, we make use of the Cantor function c : r0, 1s Ñ r0, 1s defined as follows: Put c0pxq “ x and
for every integer n P N let

cnpxq “

$

’

&

’

%

1
2
cn´1p3xq if 0 ď x ă 1

3
1
2

if 1
3

ď x ă 2
3

1
2
p1 ` cn´1p3x ´ 2qq if 2

3
ď x ď 1

1. Show that the sequence cn converges pointwise as n Ñ 8. The limiting function is called the
Cantor function c.

2. Show that the convergence is uniform and conclude that c is continuous.

3. Show that c is constant on intervals of the form p3k`1
3n

, 3k`2
3n

q where n P N and k “ 0, 1, . . . , 3n´1´1.
These are the intervals removed from r0, 1s in the construction of the Cantor set C. Conclude
that c1 “ 0 up to a set of Lebesgue measure zero.

Now define f : r0, 1s Ñ r0, 2s as fpxq “ x ` cpxq.

4. Show that f is strictly increasing.

5. Prove that f is a homeomorphism, that is, show that f is bijective and that both f and f´1

are continuous.

6. Prove that f maps Borel sets to Borel sets.

7. Let C be the Cantor set. Prove that lpfpCqq ą 0.

We can now use the fact that every measurable set M P LpRq with lpMq ą 0 contains a set that is
not Lebesgue measurable to conclude that there is a N Ă fpCq that is not Lebesgue measurable.

8. Argue that f´1pNq is Lebesgue measurable.

9. Argue that f´1pNq cannot be Borel measurable.

*: Bonus problem
**: Bonus and harder problem
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Constructor university - Real analysis Tutorial VI Due on 21/03/2025

Measurable functions and Lebesgue integral

Problem VI.1: (2p)

Let f : pR,BpRqq Ñ pR,BpRqq be a function such that f´1ptcuq is measurable for every c P R. Is
f necessarily measurable? Prove or disprove.

Problem VI.2: (4p)

Let pX,Aq be a measurable space and pfnqnPN a sequence of measurable functions fn : pX,Aq Ñ

pR,BpRqq. Let E0 “ tx P X : limnÑ8 fnpxq existsu. Is E0 measurable? Prove or disprove.

Problem VI.3: (6p)

Let pX,A, µq be a measure space with µ a non-zero measure and f : pX,Aq Ñ pR,BpRqq a
measurable function. Show that for any ϵ ą 0 there exists a measurable A P A with µpAq ą 0 such
that |fpxq ´ fpyq| ă ϵ for all x, y P A.

Problem VI.4: (3p+1p+4p)

Let pX,A, µq be a measure space and f : pX,Aq Ñ pR,BpRqq a measurable function.

1. Suppose f is non-negative and that
ş

X
fdµ “ 0. Show that f is the zero function almost

everywhere, that is, show that µptx P X : fpxq ‰ 0uq “ 0. Also argue why tx P X : fpxq ‰ 0u

is measurable.

2. Suppose now that the condition that f be non-negative is dropped. Is f still zero almost
everywhere? Provide a proof or counter example.

3. Suppose that
ş

M
fdµ “ 0 where M is any measurable subset of X. Is f zero almost everywhere?

Prove or disprove.

*: Bonus problem
**: Bonus and harder problem
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Constructor university - Real analysis Tutorial VII Due on 28/03/2025

Monotone and dominated convergence

Problem VII.1: (3p+3p)

1. Let fn : pE,A, µq ÞÑ R` be a sequence of measurable functions. Prove that

ÿ

nPN

ż

E

fndµ “

ż

E

˜

ÿ

nPN

fn

¸

dµ

2. Let f : pE,A, µq ÞÑ R`. For A P A define µf pAq “
ş

A
fdµ. Prove that µf : A Ñ R` is a

measure on pE,Aq.

Problem VII.2: (6p)

Let pwnqnPN be given by

wn “

ż

R`

sinpπxq

1 ` xn`2
dx,

where dx denotes the Lebesgue measure. Evaluate limnÑ8 wn.

Problem VII.3: (4p+4p)

We will deduce a limit formula for the Gamma function

Γpsq “

ż `8

0

e´tts´1dt.

The Beta function Bpx, yq is defined as

Bpx, yq “

ż 1

0

p1 ´ tqx´1ty´1dt, where x, y ą 0.

For this exercise you can use the following relation:

Bpx, yq “
ΓpxqΓpyq

Γpx ` yq
.

1. Show that for all s ą 0:
lim
nÑ8

ż n

0

ˆ

1 ´
t

n

˙n

ts´1dt “ Γpsq .

2. Deduce the Gauss formula, which states that for all s ą 0:

Γpsq “ lim
nÑ8

n!ns

sps ` 1q ¨ ¨ ¨ ps ` nq
.

*: Bonus problem
**: Bonus and harder problem
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Constructor university - Real analysis Tutorial VIII Due on 04/04/2025

Integration

Problem VIII.1: (5p)

Compute the following integral:
ż 1

0

x2 ´ 1

logpxq
dx

Proceed by defining

Gptq :“

ż 1

0

xt ´ 1

logpxq
dx

Then differentiate Gptq. Justify why you can move the differentiation under the integral sign.
Afterwards integrate the simplified G1ptq on an appropriate interval.

Problem VIII.2: (3p+4p)

Let f : R Ñ C be an integrable function. Define the Fourier transform pf : R Ñ C by

pfpξq “

ż

R
e´iξxfpxqdx.

1. Show that pf is well-defined and continuous on R.

2. Suppose that
ş

R |xfpxq|dx ă 8. Show that pf is continuously differentiable and that

pf 1
pξq “ ´i{xfpxq.

The notation {xfpxq is to be understood as the Fourier transform of the mapping x ÞÑ xfpxq.

Problem VIII.3: (5p+3p)

Let pE, T , µq be a finite measure space with µ ‰ 0, and f : E Ñ C a µ-integrable function.
Suppose that there exists a closed set F Ă C such that for all A P T with µpAq ą 0

1

µpAq

ż

A

fpxq dµpxq P F.

1. Prove that fpxq P F for µ-a.e. x P E.
Hint : Prove that for every open ball Brpzq Ă F c, we have µpf´1pBrpzqqq “ 0.

2. Generalize the result to σ-finite measures.

*: Bonus problem
**: Bonus and harder problem
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Constructor university - Real analysis Tutorial IX Due on 11/04/2025

Product measures and Fubini’s Theorem

Problem IX.1: (5p)

Let l denote the Lebesgue measure on (R,LpRq) and put l2 “ lbl. Argue that BpR2q Ă LpRqbLpRq

and show that, up to normalisation, l2 is the unique translation invariant measure on pR2,BpR2qq.

Problem IX.2: (5p)

Define LpR2q – BpR2q
lbl

. Prove that

LpRq b LpRq Ĺ LpR2
q.

Problem IX.3: (5p)

Let f : R2
` Ñ R be defined as fpx, yq “ rp1 ` yqp1 ` x2yqs

´1. Apply Fubini’s Theorem to f to
calculate

ż `8

0

logpxq

x2 ´ 1
dx.

Problem IX.4: (5p)

Let pE,A, µq be a measure space and f : E Ñ R` a measurable function. Prove that
ż

E

fpxqdµpxq “

ż 8

0

µptx P E : fpxq ą tuqdt,

where dt is the Lebesgue measure.

Problem IX.5: (*)(5p)

Let µ be a probability measure on pR,BpRqq. For z P CzR, define

Fµpzq “

ż

R

1

λ ´ z
dµpλq.

Prove that

µppa, bqq ` µpra, bsq “
2

π
lim
δÑ0`

ż b

a

ImpFµpt ` iδqqdt,

for all a ă b.

*: Bonus problem
**: Bonus and harder problem
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Constructor university - Real analysis Tutorial X Due on 25/04/2025

Change of variables

Problem X.1: (5p)

Compute the Gaussian integral:
ż

R
e´x2

dx.

To do so, consider the square of the integral above and change to polar coordinates, that is, use the
parametrisation φ : p0,8q ˆ p´π, πq Ñ R2zpp´8, 0s ˆ t0uq defined by φpr, θq “ pr cospθq, r sinpθqq.

Problem X.2: (4p+3p+3p)

Fix n P N and let Sn :“ tx P Rn`1 : ||x|| “ 1u be the surface of the unit ball of dimension n ` 1.
Define Φ : p0,8q ˆ Sn Ñ Rn`1zt0u by Φpr, dq “ rd.

1. Show that there is a unique measure Ω on BpSnq with the property that for all B P Bpp0,8qq

and E P BpSnq

ln`1pΦpB ˆ Eqq “

ˆ
ż

B

rndr

˙

ΩpEq.

Hint: ΩpEq “ pn ` 1qln`1ptre P Rn`1 : r P p0, 1s, e P Euq.

2. Conclude that for any measurable f : Rn`1 Ñ R`

ż

Rn`1

fpxqdx “

ż

Sn

ż 8

0

fpΦpr, dqqrndrdΩ.

3. Compute ΩpSnq. Proceed by evaluating the integral

Ipnq “

ˆ
ż

R
e´x2

dx

˙n`1

in two different ways.
Hint: Recall the definition of the Gamma function: Γpxq “

ş8

0
tx´1e´tdt, x ą 0.

Problem X.3: (5p)

Consider Rn equipped with the Euclidean norm. For which α are the following functions integrable?

1. fpxq “ ||x||α1B1p0q.

2. fpxq “ ||x||α1RdzB1p0q.

*: Bonus problem
**: Bonus and harder problem
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Constructor university - Real analysis Tutorial XI Due on 02/05/2025

Lebesgue spaces

Problem XI.1: (3p)

Let f be bounded and in Lp0 for some finite p0 ě 1. Prove that

lim
pÑ8

||f ||p “ ||f ||8.

Problem XI.2: (4p+4p)

1. Let 1 ď p, q, r ď 8 with p´1 ` q´1 “ r´1. Prove that for any f P Lp, g P Lq

||fg||r ď ||f ||p||g||q.

2. Let n P N and 1 ď p1, p2, . . . , pn ď 8 with 1 “
řn

i“1 p
´1
i . Prove that for any fi P Lpi

pi “ 1, 2, . . . , nq:
||f1f2...fn||1 ď ||f1||p1 ||f2||p2 ...||fn||pn .

Problem XI.3: (3p)

Prove that lp spaces are equivalently defined as LppN,PpNq,#q where # is the counting measure.
Hint: For f #-integrable show that

ż

N
fd# “

ÿ

nPN

fpnq

Problem XI.4: (3p+3p)

Let E “ ta, bu and consider the measure defined by µptauq “ 1 and µptbuq “ 8 on PpEq.

1. Characterise L1 and L8 and their dual spaces as euclidean spaces. What are their dimensions?

2. What do you conclude regarding the Riesz representation theorem? Why does the Riesz
representation theorem not apply in this case for L1?

Problem XI.5: (5p)(*) :

Let A be a positive definite symmetric matrix. In particular this means A can be diagonalized as
A “ ODOt where D is a diagonal matrix, O is an orthogonal matrix ( O´1 “ Ot ). Calculate

ż

Rd

e´ăx,Axądldpxq.

*: Bonus problem
**: Bonus and harder problem
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Constructor university - Real analysis Tutorial XII Due on 09/05/2025

Fourier series

Problem XII.1: (2p+3p)

Let f P L2
pr0, 2πsq and let ck “ p2πq´1{2

ş2π

0
e´ikxfpxqdx, with k P Z be its Fourier coefficients.

For n P N, let an “ π´1{2
ş2π

0
sinpnxqfpxqdx and bn “ π´1{2

ş2π

0
cospnxqfpxqdx.

1. What is the relationship between the coefficients pan, bnq and cn? Conclude that

fpxq “ lim
NÑ8

1
?
π

«

b0
2

`

N
ÿ

n“1

pan sinpnxq ` bn cospnxqq

ff

,

where the limit is taken in the L2-sense.

2. Compute the coefficients an and bn for the following functions: Id, 1r0,πs and the triangle function

tpxq “ x1r0,πspxq ` p2π ´ xq1sπ,2πspxq

on r0, 2πs.

Problem XII.2: (4p+4p+3p+4p)

View r0, 2πs as a group with addition mod 2π. Let f P L2
pr0, 2πsq and denote by

cn “
1

?
2π

ż 2π

0

e´inxfpxqdx

its Fourier coefficients.

1. For N P N0, let rSNpfqspxq “ p2πq´1{2
řN

n“´N cne
inx. Prove that

rSNpfqspxq “
1

2π

ż 2π

0

fpy ` xq
sin rpN ` 1{2qys

sinpy{2q
dy.

2. Let rCNpfqspxq “ pN ` 1q´1
řN

n“0rSnpfqspxq be the Cesaro average of the Fourier sum of f .
Prove that

rCNpfqspxq “
1

2πpN ` 1q

ż 2π

0

fpy ` xq
sin2 rpN ` 1qy{2s

sin2py{2q
dy.

Hint: You can use the trigonometric relations 2 sinpaq sinpbq “ cospa ´ bq ´ cospa ` bq and
2 sin2paq “ 1 ´ cosp2aq.

3. Denote

FNpyq “
sin2 rpN ` 1qy{2s

2πpN ` 1q sin2py{2q
.

Prove that for any 0 ă δ ă π, FNpyq Ñ 0 as N Ñ 8 uniformly in rδ, 2π ´ δs.

4. Prove that CNpfq converges to f pointwise if f continuous and periodic, that is, if fp0q “ fp2πq.

*: Bonus problem
**: Bonus and harder problem
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Constructor university - Real analysis Tutorial XIII Due on 16/05/2025

The Stone-Weierstrass theorem

Problem XIII.1: (2p+2p+2p+2p+2p+2p+2p+2p+2p+2p)

Let pX, dq be a compact metric space and let C0pX,Rq (respectively C0pX,Cq) be the space of
continuous functions from X to R (respectively C) equipped with the supremum norm. Our goal is to
prove the following theorems:

Theorem XIII.1: Real Stone-Weierstrass theorem

If S Ď C0pX,Rq is a (unital) sub-algebra such that S separates the points of X:

@x ‰ y P X, Df P S such that fpxq ‰ fpyq.

Then S is dense in C0pX,Cq.

Theorem XIII.2: Complex Stone-Weierstrass theorem

Let pX, dq be a compact metric space. If S Ď C0pX,Cq is a (unital) sub-algebra such that S
separates the points of X and is closed under complex conjugation, then S is dense in C0pX,Cq.

Let S Ď C0pX,Rq satisfying the assumptions of the real Stone-Weierstrass theorem.

Define a sequence of polynomials Pn : r´1, 1s Ñ R pn P N0q, recursively by

P0 – 0

Pn`1ptq – Pnptq `
1

2
pt2 ´ Pnptq2q, n P N.

1. Prove that for all t P r´1, 1s, 0 ď Pnptq ď |t|.

2. Prove that for all t P r´1, 1s, Pnptq is non-decreasing.

3. Conclude that Pn converges uniformly to |¨| on r´1, 1s.

4. Let f, g P S, prove that |f | ,maxpf, gq,minpf, gq P S. Here S denotes the closure of S.

5. Deduce that @x ‰ y P X, @a, b P R, Dg P S such that gpxq “ a and gpyq “ b.

Now fix f P C0pX,Rq, x P R and ϵ ą 0. From 5, we have

@y P Xz txu , Dgy P S such that gypxq “ fpxq and gypyq “ fpyq.

6. Prove that the sets Uy – tz P X | gypzq ă fpzq ` ϵu are an open covering of X.

7. Construct a function gx P S such that gxpxq “ fpxq and gx ă f ` ϵ.
Hint: X is compact so we can extract a finite covering from every open covering.

8. Prove that the sets Vx – tz P X | fpzq ă gxpzq ` ϵu are an open covering of X.

9. Construct a function h P S such that @x P X, fpxq ´ ϵ ă hpxq ă fpxq ` ϵ. This proves the real
Stone-Weierstrass theorem.

10. Deduce the complex Stone-Weierstrass theorem.

*: Bonus problem
**: Bonus and harder problem
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Problem XIII.2: (*)(1p+1p+1p+1p+1p)

Let a ą 0, and define ga : R Ñ R by

gapxq “
π´ 1

4

?
a
e´ 1

2px
aq

2

.

Recall the definition of the Fourier transform:

Fpfqpνq “
1

?
2π

ż

R

fpxqe´iνxdx.

1. Verify that ga is normalized in L2, that is, show that ||ga||2 “ 1.

2. Prove that for all ν P R,

Fpgaq
1
pνq “ ´νa2Fpgaqpνq.

Hint: Use the results from Problem VIII.2.

3. Deduce that there is a c P R such that for all ν P R,

Fpgaqpνq “ ce´ 1
2

pνaq2 .

4. Compute Fpgaqp0q and deduce the value of c.

5. Show that FpFpgaqq “ ga.

*: Bonus problem
**: Bonus and harder problem
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Fourier transform (Bonus)

Problem XIV.1:

Define the Hermite functions ϕn : R Ñ R by the equation

ϕnpλq “
p´1qn
?
2nn!

eλ
2{2

ˆ

d

dλ

˙n

e´λ2

.

Also define the Hermite polynomials by Hnpλq “
?
2nn!ϕnpλqeλ

2{2.

1. Prove that for all a P R
8
ÿ

n“0

Hnpλq
an

n!
“ e´a2`2aλ.

2. If f P L2
pRq and xf, ϕny “ 0 for all n P N0, prove that

ż

R
fpxqe´px´aq2{2dx “ 0,

for all a P R.

3. Use the Fourier transform to show that if
ş

R fpxqe´px´aq2{2dx “ 0 for all a P R, then f “ 0.

4. Conclude that pϕnqnPN0 is a basis for L2
pRq.

Problem XIV.2: Heat equation

Assume that f :
R` ˆ R Ñ R
pt, xq ÞÑ fpt, xq

is a smooth function such that @t P R,

x ÞÑ p1 ` x2
qfpt, xq P L1

pRq

that solves the 1-dimensional heat equation

Btf “ B
2
xf

We denote pf the Fourier transform of f with respect to the space variable:

@ν P R, @t P R`, pfpt, νq –
1

?
2π

ż

R

fpt, xqe´iνxdx

1. Prove that @ν P R, @t P R`

Bt
pfpt, νq “ ´ν2

pfpt, νq

2. Deduce that @ν P R, @t P R`,

pfpt, νq “ gtpνq pfp0, νq

with gtpνq – e´ν2t

3. Deduce that @t P R`

fpt, ¨q “
1

?
2π

F´1
pgtq ˚ fp0, ¨q

*: Bonus problem
**: Bonus and harder problem
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4. Prove that @x P R, @t P R`,

fpt, xq “
1

2
?
πt

ż

R

fp0, yqe´
px´yq2

4t dy

5. Assuming that fp0, ¨q ě 0, prove that the mass is conserved, i.e. that @t P R`,

∥fpt, ¨q∥L1 “ ∥fp0, ¨q∥L1

*: Bonus problem
**: Bonus and harder problem
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