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Constructor university - Real analysis Tutorial I 07.02.25

Set theory and topology

Problem I.1: Sets and functions

Let f: F — F a function. Let also A, B < E and P, Q) < F. Determine whether the following
statements are true. If the statement is false provide a necessary and sufficient condition on f for
the statement to be true. (i.e whether f needs to be injective, surjective etc.). A° is the complement
of the set A in E. f~!(A) is the pre-image of the set A.

- f(AuB) = f(A) v f(B)
- f(An B) = f(A) n f(B)

—_

Problem 1.2: De Morgan’s laws
Let I be a set and (A;);e; a family of sets.
1. Prove that

(ﬂAZ)C - A

i€l el
2. Prove that

(UA,-)C =4

el iel

Problem I.3: Open sets on R”
For any x € R™ and r > 0, the open ball of radius r around z is defined as B,(x) = {y €
R" : d(z,y) < r}, where d(x,y) = v/, |vi — yi]>. Let 7 = {U(x’r)eF B.(z) : F < R"x (0, oo)}
and 7 = {O € R" : Yy € O Ir > 0 such that B,(y) < O}.

1. Prove that 7 = 7.
2. Let N € N and let (Oy)X_, be a finite collection of sets in 7;. Prove that ﬂ]kvzl Orem.

3. Let I be an arbitrary index set and let (Og)res be a collection of elements in 7. Prove that

Problem I.4: Open sets on R (*)
Prove that an open set in R (in the standard topology) is a countable union of open intervals.

Hint: Use that fact that for any x € R and r > 0, Q n B.(z) # .

*. Bonus problem 2
**: Bonus and harder problem



Constructor university - Real analysis Tutorial 11 Due for 14.02.2025

Sigma-Algebras

Problem II.1: (2p)

Provide an explicit counter-example to show that, in general, the union of two o-algebras A; and
Aj is not a o-algebra.

Problem II.2: (6p)

In the lecture, the Borel o-algebra B(R) was introduced as the o-algebra generated by the open
sets 7 < P(R). Let £ = {(a,b) : a,be Q, a < b} be the set of open intervals with rational endpoints.
Prove that B(R) = ¢(&). This shows that B(R) can be generated by a countable set.

Problem I1.3: (4p)

Let M be an uncountably infinite set and let A = o({{m} = M : me M}). Prove that A =
{Ac M : Ais countable or A€ is countable}

Problem I1.4: (4p)
Let f: E — F a function.

1. Let A = {f~Y(B) | Be B} where B is a o-algebra on F'.
Is A a o-algebra on E7?

2. Let B = {f(A) | Ae A} where A is a o-algebra on E.
Is B a g-algebra on F?

Problem I1.5: (4p)
Show whether the following are valid o-algebras on the set X.
1. The o-algebra formed by the sets A — X such that either A or A° is finite.
2. The o-algebra formed by the sets A — X such that either A or A€ is countable.

*. Bonus problem 3
**: Bonus and harder problem



Constructor university - Real analysis Tutorial III Due for 28.02.2025
Measures

Problem III.1: (2p)

Let (X,.A) be a measurable space and a € X. Define ¢, : A — Ry by 6,(A) =1 if a € A and
da(A) = 0 else. Show that ¢, is a measure on (X, .A).

Problem III.2: (4p+4p)

Let (X, A, ©) be a measure space. The purpose of this exercise is to prove the so-called
inclusion-exclusion formulas: Let n € N and Ay, Ao, ..., A, € A such that u(| J;_; Ax) < o. Prove
that:

{il ..... ik}C{l ..... j:1
2.
n n k
k=1 k=1 {il ..... lk}C{l ,,,,, TL} j:1
Here, the summation is over all subsets of {1,...,n} with k elements.

Hint: Use mathematical induction over n.

Problem II1.3: (2p+4p+4p)
Let (X, A, p) be a measure space and let (A,),en be a collection of elements in A. Put

6] e}
* 1 _
A —hIT]L[Ls(EpAn = ﬂ sz A,,.

1. Suppose that Y. | 1u(A,) < . Prove that u(A*) = 0.
2. Now suppose that p is a probability measure, i.e. u(X) = 1. A collection (By,)nen of elements

in A is called independent if
I (ﬂ Bj) = [ u(B;).

jeJ jed
for any finite J < N. Prove that independence of (B, ),en implies independence of (BS),en-
Hint: Use the inclusion-exclusion formula.

3. Suppose that (A,).en are independent and > | u(A,) = . Prove that u(A*) = 1.
Hint: Compute p((A*)°). You can use that In(1 — z) < —x for x € [0, 1].

*. Bonus problem 4
**: Bonus and harder problem



Constructor university - Real analysis Tutorial III Due for 28.02.2025
Problem II1.4: (*)(2p+3p)

Recall that in the lecture, the outer Lebesgue measure I* : P(R) — R was defined as

I*(M) = inf - D (b — an),

(@n,bn)nenel neN

where I(M) = {(an, bp)nen : an < b, and M <
countably many open intervals.

(an, by)} is the set of coverings of M < R through

neN

1. Let B be the set of all rational numbers in the interval [0, 1], and let {I;}}_; be a finite collection
of open intervals that covers B. Prove that >, _, I*(I) = 1.

2. Let A be the set of all irrational numbers in the interval [0, 1]. Prove that [*(A) = 1.
Hint: Begin by showing that the rational numbers in the interval [0, 1] have outer measure 0.

*. Bonus problem 5
**: Bonus and harder problem



Constructor university - Real analysis Tutorial IV Due for 07.03.2025
The Lebesgue Measure

Problem IV.1: (1p+1p+2p+2p+2p)
The aim of this exercise is to construct Vitali sets, which are an example of non Lebesgue
measurable sets. The construction depends on the axiom of choice. Define a relation ~ on R by

x~y:<<= r—yeqQ.

1. Show that ~ is an equivalence relation.

2. The equivalence classes of R under ~ are called cosets of Q in R and are denoted by R/Q. Show
that [0,1] n A # ¥ for all A€ R/Q.

3. Aset V < [0,1] is a Vitali set if contains exactly a single point from each coset of Q in R. The
axiom of choice guarantees the existence of such sets. Show that the sets ¢ + V where q € Q are
disjoint. Here ¢ + V refers to a translation of V' by gq.

4. Let V < [0, 1] be a Vitali set and C' = Q n [—1,1].

Now consider
U=Jv+o.
qeC

Show that [0,1] <« U < [-1,2].

5. Conclude that V is not measurable.
Hint: A countable sum of some constant is either 0 or infinite.

Problem IV.2: (3p+3p)
Let ¢ be a measure on (R, £(R)) with x([0,1]) = 1 and let I be the Lebesgue measure.

1. Suppose that p(a + M) = p(M) for all M € L(R) and a € R. Show that u = [.

2. Suppose that p(AM) = || u(M) for all M € L(R) and X € R. Show that p = I.
Problem IV.3: (3p+3p)

1. Prove that the Lebesgue measure is outer regular, that is, show that for any A € L(R)

I(A) =inf{l(U) : Ac U and U open}.

2. Prove that the Lebesgue measure is inner reqular, that is, show that for any A € L(R)

[(A) =sup{l(K) : K € A and K compact}.

*. Bonus problem 6
**: Bonus and harder problem



Constructor university - Real analysis Tutorial V In Class 14/03/2025
Non-Borel measurable set

The purpose of this exercise is to construct a set that is Lebesgue - but not Borel - measurable.
To do so, we make use of the Cantor function c: [0,1] — [0,1] defined as follows: Put ¢(x) = x and
for every integer n € N let

2cn-1(31)

,_.._..
N e T
wio wik O

cn(7) =

NI NI= N
NN N
82 8 8
N NN
= win Wi

(14 cp1(3z —2))

—

1. Show that the sequence ¢, converges pointwise as n — c0. The limiting function is called the
Cantor function c.

2. Show that the convergence is uniform and conclude that ¢ is continuous.

3. Show that ¢ is constant on intervals of the form (%, 3’;[2) wherene Nand k =0,1,...,3" 1.

These are the intervals removed from [0, 1] in the construction of the Cantor set C. Conclude
that ¢ = 0 up to a set of Lebesgue measure zero.

Now define f: [0,1] — [0,2] as f(z) = = + c(x).
4. Show that f is strictly increasing.

5. Prove that f is a homeomorphism, that is, show that f is bijective and that both f and f~!
are continuous.

6. Prove that f maps Borel sets to Borel sets.
7. Let C be the Cantor set. Prove that [(f(C)) > 0.

We can now use the fact that every measurable set M € L(R) with (M) > 0 contains a set that is
not Lebesgue measurable to conclude that there is a N < f(C') that is not Lebesgue measurable.

8. Argue that f~'(N) is Lebesgue measurable.
9. Argue that f~*(NN) cannot be Borel measurable.

*. Bonus problem 7
**: Bonus and harder problem



Constructor university - Real analysis Tutorial VI Due on 21/03/2025

Measurable functions and Lebesgue integral

Problem VI.1: (2p)

Let f: (R,B(R)) — (R,B(R)) be a function such that f~!({c}) is measurable for every c € R. Is
f necessarily measurable? Prove or disprove.

Problem VI.2: (4p)

Let (X,.A) be a measurable space and (f,,)nen @ sequence of measurable functions f, : (X, A) —
(R,B(R)). Let Ey = {x € X : lim, o fu(z) exists}. Is Ey measurable? Prove or disprove.

Problem VI.3: (6p)

Let (X, A, u) be a measure space with p a non-zero measure and f : (X, A) — (R,B(R)) a
measurable function. Show that for any ¢ > 0 there exists a measurable A € A with u(A) > 0 such
that | f(z) — f(y)| < e for all x, y € A.

Problem VI.4: (3p+1p+4p)
Let (X, A, 1) be a measure space and f : (X,.4) — (R, B(R)) a measurable function.

1. Suppose f is non-negative and that SX fdp = 0. Show that f is the zero function almost
everywhere, that is, show that p({x € X : f(z) # 0}) = 0. Also argue why {z € X : f(z) # 0}
is measurable.

2. Suppose now that the condition that f be non-negative is dropped. Is f still zero almost
everywhere? Provide a proof or counter example.

3. Suppose that SM fdp = 0 where M is any measurable subset of X. Is f zero almost everywhere?
Prove or disprove.

*. Bonus problem 8
**: Bonus and harder problem



Constructor university - Real analysis Tutorial VII Due on 28/03/2025

Monotone and dominated convergence

Problem VII.1: (3p+3p)

1. Let f, : (E, A, ) — R, be a sequence of measurable functions. Prove that

2!&@!(2%)@

neN neN

2. Let f : (E,A,u) — Ry. For A € A define up(A) = §, fdu. Prove that py : A — Ry is a
measure on (E, A).

Problem VII.2: (6p)
Let (wy)nen be given by

wn:f sin(mx) i
R

n+2 ’
+1+:11:

where dx denotes the Lebesgue measure. Evaluate lim,, 4 w,,.

Problem VII.3: (4p+4p)
We will deduce a limit formula for the Gamma function

+o0
(s) = f ettt
0

The Beta function B(x,y) is defined as

1
B(x,y) = J (1-— t)x_lty_ldt, where x, y > 0.
0

For this exercise you can use the following relation:

L)l (y)

R )

1. Show that for all s > 0:
n t n
lim (1 - _) 1At = T(s)
n—0oo 0 n

2. Deduce the Gauss formula, which states that for all s > 0:

nlns

F(S):gi—{%os(s—kl)-“(s%—n)‘

*. Bonus problem 9
**: Bonus and harder problem



Constructor university - Real analysis Tutorial VIII Due on 04/04/2025

Integration

Problem VIIIL.1: (5p)

Compute the following integral:

Proceed by defining

Then differentiate G(t). Justify why you can move the differentiation under the integral sign.
Afterwards integrate the simplified G’(¢) on an appropriate interval.

Problem VIIIL.2: (3p+4p)
Let f : R — C be an integrable function. Define the Fourier transform f: R — C by

fle) = fR eI f (1)

1. Show that ]? is well-defined and continuous on R.

2. Suppose that § |z f(z)|dz < co. Show that f is continuously differentiable and that

F(e) = —ixf(x).

The notation xf(x) is to be understood as the Fourier transform of the mapping = — xf(x).

Problem VIII.3: (5p+3p)

Let (E,T,u) be a finite measure space with p # 0, and f : E — C a p-integrable function.
Suppose that there exists a closed set F' < C such that for all Ae 7T with pu(A) >0

1
= j f(z) du(z) €

1. Prove that f(x) € F for p-a.e. € E.
Hint : Prove that for every open ball B,(2) < F¢, we have u(f~'(B.(2))) = 0.

2. Generalize the result to o-finite measures.

*. Bonus problem 10
**: Bonus and harder problem



Constructor university - Real analysis Tutorial IX Due on 11/04/2025

Product measures and Fubini’s Theorem

Problem IX.1: (5p)

Let [ denote the Lebesgue measure on (R, £(R)) and put Iy = I®I. Argue that B(R?) = L(R)QL(R)
and show that, up to normalisation, I, is the unique translation invariant measure on (R?, B(R?)).

Problem IX.2: (5p)
Define £(R?) = B(RQ)@I. Prove that

L(R)® L(R) < L(R?).

Problem IX.3: (5p)
Let f : R2 — R be defined as f(z,y) = [(1+y)(1+ 22%)]"". Apply Fubini’s Theorem to f to

calculate v |
J Ozg—(x)dx.
g x¢—1

Problem IX.4: (5p)
Let (E, A, 1) be a measure space and f : E — R, a measurable function. Prove that
0¢]
| s@anta) = | utiae B @)= ar
E 0

where dt is the Lebesgue measure.

Problem IX.5: (*)(5p)
Let p be a probability measure on (R, B(R)). For z € C\R, define

R = | s dutv.

Prove that ,
2
pl(a,0)) + pl[a,b]) = — lim | Im(F,(t +i9))dt,
for all a < b.
*. Bonus problem 11

**: Bonus and harder problem



Constructor university - Real analysis Tutorial X Due on 25/04/2025
Change of variables

Problem X.1: (5p)

Compute the Gaussian integral:

f e~ dz.
R

To do so, consider the square of the integral above and change to polar coordinates, that is, use the
parametrisation ¢ : (0,00) x (—m,7) — R*\((—00,0] x {0}) defined by ¢(r,6) = (r cos(f),rsin(h)).
Problem X.2: (4p+3p+3p)

Fix n € N and let S := {x € R™™ : ||z|| = 1} be the surface of the unit ball of dimension n + 1.
Define @ : (0,0) x S™ — R\ {0} by ®(r,d) = rd.

1. Show that there is a unique measure 2 on B(S™) with the property that for all B € B((0,x))
and E € B(S™)

s (B(B x E)) — ( JB r”dr) Q(E).

Hint: Q(E) = (n+ D)l 1 ({ree R™™ : r e (0,1],e € E}).

2. Conclude that for any measurable f : R®*! — R,
o0
f f(z)dz = J f(@(r,d))r"drdS.
Rr+1 sm Jo

3. Compute Q(S™). Proceed by evaluating the integral

n+1
I(n) = (J erd:c>
R
in two different ways.

Hint: Recall the definition of the Gamma function: T'(x) = " t*"te~tdt, = > 0.

Problem X.3: (5p)
Consider R equipped with the Euclidean norm. For which « are the following functions integrable?
L. f(x) = ||z]|*1B,(0)-
2. f(x) = [|z]|*1ra\ g, (0)-

*. Bonus problem 12
**: Bonus and harder problem



Constructor university - Real analysis Tutorial XI Due on 02/05/2025
Lebesgue spaces

Problem XI.1: (3p)
Let f be bounded and in L for some finite py > 1. Prove that

1o [l = {11l

Problem XI.2: (4p+4p)
1. Let 1 < p,q,r < oo with p~! + ¢71 = r~1. Prove that for any f e LP, ge L4

1791l < [[f1lolgllq-

2. Let n e Nand 1 < py,po,...,pn < 0 with 1 = Z?:lpi’l. Prove that for any f; € LP
(1=1,2,...,n):

L frfoSulle < (1 fillp 1 f2llpa | fallp-

Problem XI.3: (3p)

Prove that [P spaces are equivalently defined as LP(N, P(N), #) where # is the counting measure.
Hint: For f #-integrable show that
[REEINE

neN

Problem XI.4: (3p+3p)
Let E = {a, b} and consider the measure defined by pu({a}) = 1 and u({b}) = oo on P(E).
1. Characterise L' and L® and their dual spaces as euclidean spaces. What are their dimensions?

2. What do you conclude regarding the Riesz representation theorem? Why does the Riesz
representation theorem not apply in this case for L'?

Problem XI.5: (5p)(*) :

Let A be a positive definite symmetric matrix. In particular this means A can be diagonalized as
A = ODO! where D is a diagonal matrix, O is an orthogonal matrix ( O~! = O' ). Calculate

f e’<x’Ax>dld(x).
Rd

*. Bonus problem 13
**: Bonus and harder problem



Constructor university - Real analysis Tutorial XII Due on 09/05/2025

Fourier series

Problem XII.1: (2p+3p)

Let f e L*([0,27]) and let ¢ = (27)~1/2 Siw e~ f(x)dx, with k € Z be its Fourier coefficients.
For n e N, let a, = 7—/2 S(Q)W sin(nz) f(z)dx and b, = 7/2 Sgﬂ cos(nx) f(x)dzx.
1. What is the relationship between the coefficients (a,,b,) and ¢,? Conclude that
b

f(x) = ]\171_1207 — Z (an sin(nx) + b, cos(nz)) |,

where the limit is taken in the L-sense.

2. Compute the coefficients a,, and b, for the following functions: Id, 1} ) and the triangle function
t(x) = 2l (z) + (27 — 2) 1)z 2m ()
n [0, 27].

Problem XII1.2: (4p+4p+3p+4p)
View [0,27] as a group with addition mod 27. Let f e L*([0,27]) and denote by

77,7’L$f

Cn =

27
Vo J
its Fourier coefficients.

1. For N € Ny, let [Sx(f)](z) = (2n)" 232N ¢.¢™. Prove that

[Sn(f)](z) = — j "y 4 o) S 2,

sin(y/2)
2. Let [On()](z) = (N + 1) [S.(f)](x) be the Cesaro average of the Fourier sum of f.
Prove that
B 1 2 sin? [(N + 1)y/2]
[CN<f)](x) - m o f(y+x) 51n2(y/2) dy

Hint: You can use the trigonometric relations 2sin(a)sin(b) = cos(a — b) — cos(a + b) and
2sin®(a) = 1 — cos(2a).

3. Denote
sin? [(N + 1)y/2]

27 (N + 1) sin*(y/2)
Prove that for any 0 < § <7, Fy(y) — 0 as N — oo uniformly in [, 27 — 4].

Fn(y) =

4. Prove that Cy(f) converges to f pointwise if f continuous and periodic, that is, if f(0) = f(27).

*. Bonus problem 14
**: Bonus and harder problem



Constructor university - Real analysis Tutorial XIII Due on 16/05/2025

The Stone-Welierstrass theorem

Problem XIII.1: (2p+2p-+2p+2p+2p+2p+2p+2p+2p+2p)

Let (X, d) be a compact metric space and let C°(X,R) (respectively C°(X,C)) be the space of
continuous functions from X to R (respectively C) equipped with the supremum norm. Our goal is to
prove the following theorems:

Theorem XIII.1: Real Stone-Weierstrass theorem
If S < C°%X,R) is a (unital) sub-algebra such that S separates the points of X:

Vo # ye X,3f € S such that f(z) # f(y).

Then S is dense in C°(X,C).

— Theorem XIII.2: Complex Stone-Weierstrass theorem

Let (X,d) be a compact metric space. If S < C%X,C) is a (unital) sub-algebra such that S
separates the points of X and is closed under complex conjugation, then S is dense in C°(X,C).

Let S < C°(X,R) satisfying the assumptions of the real Stone-Weierstrass theorem.

Define a sequence of polynomials P, : [—1,1] — R (n € Np), recursively by

P()ZZO

Poar(t) = Po(t) + %(t? _P(®)?), neN.

1. Prove that for all t € [-1,1], 0 < P,(t) < |t].
2. Prove that for all ¢ € [—1,1], P,(t) is non-decreasing.
3. Conclude that P, converges uniformly to |-| on [—1,1].
4. Let f,g e S, prove that |f|, max(f, g), min(f,g) € S. Here S denotes the closure of S.
5. Deduce that Vx # y € X,Va,b e R,3g € S such that g(z) = a and g(y) = b.
Now fix f e C%(X,R), z € R and € > 0. From 5, we have

Vy € X\ {z},3g, € S such that g,(z) = f(x) and g,(y) = f(y).

6. Prove that the sets U, = {z € X | g,(2) < f(2) + €} are an open covering of X.

7. Construct a function g, € S such that g,(z) = f(z) and g, < f + €.
Hint: X is compact so we can extract a finite covering from every open covering.

8. Prove that the sets V,, == {z € X | f(2) < g.(2) + €} are an open covering of X.

9. Construct a function h € S such that Vz € X, f(z) — € < h(z) < f(z) + €. This proves the real
Stone-Weierstrass theorem.

10. Deduce the complex Stone-Weierstrass theorem.

*. Bonus problem 15
**: Bonus and harder problem



Constructor university - Real analysis

Tutorial XIII

Problem XIII.2: (*)(1p+1p+1p+1p+1p)
Let a > 0, and define g, : R — R by

Due on 16/05/2025

Vva
Recall the definition of the Fourier transform:

F(f)v) = %2? f f(z)e " dz.

1. Verify that g, is normalized in L?, that is, show that ||g,|]2 = 1.
2. Prove that for all v € R,

F(g92)' (v)

Hint: Use the results from Problem VIII.2.

—va’F(ga)(v).

3. Deduce that there is a ¢ € R such that for all v € R,

F(ga)(w) = e300
4. Compute F(g,)(0) and deduce the value of c.
5. Show that F(F(ga)) = ga-

*. Bonus problem

16
**: Bonus and harder problem




Constructor university - Real analysis Tutorial XIV Due on 23/05/2025

Fourier transform (Bonus)

Problem XIV.1:
Define the Hermite functions ¢, : R — R by the equation

(_1)n g (d " -2
n(\) = ——="? [ — :
¢ ( ) /2nn!€ d)\ €
Also define the Hermite polynomials by H,()\) = v/2"nlep,(X)eX*/2.
1. Prove that for all a € R

n

= a 2
Z Hn(A)ﬁ — e +2ax
n=0

2. If f e L*(R) and (f, ¢,,» = 0 for all n € Ny, prove that

f f(x)e_(’”_“)Q/de =0,
R

for all a € R.
3. Use the Fourier transform to show that if {, f(x)e~@=2*2dz = 0 for all a € R, then f = 0.
4. Conclude that (¢, )nen, is a basis for L*(R).

Problem XIV.2: Heat equation
R, xR — R
(t,x) +~— f(t,x

x> (1+2°)f(t,z) e L'(R)

Assume that f : ) is a smooth function such that V¢ e R,

that solves the 1-dimensional heat equation
of = aﬁf

We denote fthe Fourier transform of f with respect to the space variable:

~

VveR,VteR,, f(t,v) = \/%777' Jf(t, x)e M dx
R
1. Prove that Vv e R,Vt e Ry
o f(t,v) = —2f(t,v)
2. Deduce that Vv e R,Vt e R,

V2t

with g, (v) == e~
3. Deduce that Vt € R

*. Bonus problem 17
**: Bonus and harder problem



Constructor university - Real analysis Tutorial XIV Due on 23/05/2025

4. Prove that Vz e R,Vt e R,

5. Assuming that f(0,-) > 0, prove that the mass is conserved, i.e. that Vt € Ry,

LFCE = 1105 ) 1

*. Bonus problem 18
**: Bonus and harder problem
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