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Introduction

Related readings
For further references related to the course material we refer to [3] for its vast collection of
problems and solutions. [1] is also a classic, we will cover chapters I, II, VI and VIII. We also
must mention that these lecture notes are inspired from the great ones of J-C. Breton [2] (in
French).

Let’s measure
As its name subtly suggests, measure theory is a framework for measuring the ’size’ of objects.
’What kind of object?’ the audience should ask. To that, the answer is quite rude and abstract:
sets. This is the reason why you will need some familiarity with set theory and quantifiers to
understand the following piece of mathematics.

But be not afraid (yet), we will start by measuring length of segments, areas of rectangles and
volumes. For these familiar objects, intuition about ’size’ will guide us through the construction
of the abstract theory of measures. Once established, this theory extends to the study of more
complex structures, such as fractals.

Measure theory is in particular renowned for its application to integration. The central
object of this course will likely be the Lebesgue integral, which, under a regularity assumption,
generalizes the Riemann integral. The case for the Lebesgue integral rests on the following idea:
if we have a notion of ’size’ on an arbitrary set E (that is, a theory for measuring objects) then
we can define the integral of some functions whose domain is E. The key advantage is that,
unlike the Riemann integral, E can differ significantly from R.

Let us develop on the link between a theory of integration (understand here: a way of
defining integrals) and a notion of ’size’ while briefly recalling Riemann’s theory of integration.

Riemann integral in a nutshell

Let f be a real function on an interval ra, bs
that we assume continuous for simplicity.
Let pxkqkPJ0,nK be a partition of ra, bs and
consider the piecewise constant fonction

fnpxq – fpxkq if xk ď x ă xk`1

From our great knowledge of the formula for
the area of rectangles we are able to define
the integral of fn as

In –

b
ż

a

fnpxqdx –

n´1
ÿ

k“0

fpxkqpxk`1 ´ xkq
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Then, imposing the partitions are of increasing precision:

ϵn – max
kPJ0,n´1K

pxk`1 ´ xkq Ñ
nÑ0

0

we benefit from the regularity of f and obtain a limit I for pInqnPN while fn converges to f , at
least pointwisely. All that is left to do is to call I the integral of f :

b
ż

a

fpxqdx – I

Any serious development of Riemann integral now needs to check that the value obtained for
the integral of f is independent of the choice we made for the partitions, but this method is not
the object of study here.

Length and integrals
As long as we are measuring objects on the real line, the meaning of ’size’ is length. Lengths
and integrals are connected, as it is possible to construct one from the other.

It is important to note that in the above construction we went from length to integrals.
Indeed, the length appeared when we integrated piecewise functions:

In “

n´1
ÿ

k“0

fpxkqLengthprxk, xk ` 1sq

if we denote, for any real interval rα, βs,

Lengthprα, βsq – β ´ α

By reversing this relation, we can extend the definition of length to sets M Ă R for which their
indicator function

1Mpxq –

#

1 if x P M

0 else

is Riemann integrable through

Length(M) –

ż

R

1Mpxqdx (.1)

since

ż

R

1rα,βspxqdx “

β
ż

α

1dx “ β ´ α

Using this definition, it is possible to make less intuitive measurements, such as the length of
the Cantor set.
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The Cantor set

Start from the unit interval

C0 – r0, 1s

and then iteratively remove a third of
it in the middle of all its parts:

@n P N,Cn`1 –
Cn Y p2 ` Cnq

3
(.2)

The limit object

C –
č

nPN

Cn

is called the Cantor set. Figure 1: The 4 first steps in the construction of the
Cantor set

The obvious question is then: what is the Length of C? Easy enough: we started with a length
of one and removed a third of it at each construction step, thus

LengthpCnq “

ˆ

2

3

˙n

To prove this, we could evaluate the Length function in (.2) or notice that Cn is made up of 2n
intervals of length 3´n. Taking the piecewise function 1Cn as Riemann approximation for 1C, it
follows that

LengthpCq “

ż

R

1Cpxqdx “ lim
nÑ8

ż

R

1Cnpxqdx “ lim
nÑ8

LengthpCnq “ lim
nÑ8

ˆ

2

3

˙n

“ 0

Hence, while remaining very much non-empty, the Cantor set has 0 length.

The need for generalization
Proud of our success in measuring the Cantor set, we ask a more challenging question: what is
the length of rational numbers, say for sake of boundedness, inside r0, 1s? Now, the non-Riemann
integrability of 1QXr0,1s deprives us from an answer. Hoping that the reader is motivated by
this existential problem, we will prove that the Lebesgue measure is a more precise measuring
tool than the Length we just defined using Riemann integral. This will allow us to settle the
question. In other words, the Lebesgue Integral will give a meaning to the following integral

1
ż

0

1Qpxqdx

4



Distributions
Imagine we have a point particle of mass 1 at the origin of space and nothing else. Then the
density δ is 0 everywhere except at origin and must integrate to 1:

1

ż

R3

δpxqdx “ 11

This prevents the value of δ at the origin to be finite otherwise the above integral would be
0. Thus, δ cannot be defined as a real function, it is called a distribution. Let us think of the
word distribution as in distribution probability (this is the case here since the integral is 1).
Moreover, δ represents the physical distribution of mass in space.

Nevertheless, if we believe δ is a real function (which it is not) then @M Ă R3,
11Mpxqδpxq “ 1Mp0R3qδpxq

1

since @x ‰ 0, δpxq “ 0, therefore by linearity

1

ż

R3

1Mpxqδpxqdx “

ż

R3

1Mp0R3qδpxqdx “ 1Mp0R3q

ż

R3

δpxqdx “ 1Mp0R3q
1 (.3)

Rigorously, δ can be defined as a measure called the Dirac mass. In this example, it is a measure
on R3, meaning that the Dirac mass attributes a ’size’ to objects in space, or in mathematical
terms, to subsets of R3. Let M Ă R3, the precise definition is

δpMq – 1Mp0R3q

Understand: ’the size of M is one if M contains the origin and 0 otherwise’. δ associate to M
the total mass that is found inside the region of space M . As promised, from this notion of
’size’ follows a theory of integration. We rewrite (.3) as our new definition of the integral:

ż

R3

1Mpxqdδpxq – δpMq (.4)

In the right-hand integral we inserted the δ inside the usual 1dx1 to remember that this integration
is performed with respect to the Dirac measure as a tool for measuring sizes.

Measures
Following the notation from the previous paragraph, we should replace the 1dx1 in (.1) by
dLengthpxq since the Riemann integral is constructed using the Length as measuring tool:

ż

R

1MpxqdLengthpxq – Length(M)

This is analogous to (.4), but with Length instead of δ. In general, if we have a set E and a way
of measuring subsets of E, say, a function µ : PpEq Ñ R, we will define an associated integral by

@M Ă E,

ż

E

1Mpxqdµpxq – µpMq
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Once it is possible to integrate indicator functions we extend the integral to piecewise functions
by linearity (a piecewise function is a linear combination of indicator functions) and then to
a more general class of functions by taking limits, exactly as is done in Riemann integration.
Making these steps rigorous will be the focus of a significant part of this course.

Brief plan
The first part of these lecture notes will be devoted to methods for constructing interesting
measures, with a focus on the Lebesgue measure generalizing the concept of length. From
measures will follow the Lebesgue integral. We will study its basic properties and applications,
ultimately leading us to an introduction to Fourier analysis.
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I Sigma-Algebras

Let E be a set.
Definition I.1: σ-algebra

A Ď PpEq is a σ-algebra on E if it is

‚ non-empty: A ‰ H

‚ closed under complement: @M P A,M c
P A

‚ closed under countable unions: @pMnqnPN Ď A,
ď

nPN

Mn P A.

pE,Aq is then called a measurable space and elements of A are called measurable sets.

Example I.2

• tH, Eu ,PpEq are respectively the smallest and the largest (for the inclusion) σ-algebras
on E.

• tH, t0, 1u , t0u , t1, 2uu is σ-algebra on t0, 1, 2u.

Beware that a σ-algebra on E is not a subset of E, but a collection of subsets of E as it is a
subset of the powerset of E. When talking about a σ-Algebra A on E, the following assertions
are true A Ď PpEq, E P A,M P A ùñ M Ď E but A P E is a mathematical statement that
should not, under any circumstances, find its way into a student’s exam.

Here are some immediate results

• The non-emptiness axiom can be replaced by H P A or E P A. Indeed, if one of the
previous is true then A is non-empty. Conversely, say that M P A, then by closeness
under complement M c P A, and by closeness under finite (a finite set is countable) union,
E “ M Y M c P A. Thus by closeness under complement again, H “ Ec P A.

• With Morgan’s law, a σ-algebra is also closed under countable intersections.

• Stability under difference: M,N P A ùñ MzN “ M Y N c P A.

Definition I.3: Generated σ-algebra

Let M Ď PpEq,

σpMq –
č

A σ´algebra on E
MĎA

A

is the smallest σ-algebra containing M. σpMq is called the σ-algebra generated by M.
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Proof:

An intersection of σ-algebras is a σ-algebra (use H P A as the non-emptiness axiom to prove
this as an Exercice), so σpMq is a σ-algebra and by construction, M Ď σpMq. Then, if A is
a σ-algebra on E containing M, we have σpMq Ď A.

We will be using this one last argument very often. For the purpose of rephrasing: σpMq is
the unique σ-algebra on E smaller than every other σ-algebra on E containing M.

Example I.4

On t0, 1u , σpt0uq “ σpt1uq “ tH, t0u , t1u , t0, 1uu.

Definition I.5: Induced σ-algebra

Let F Ď E and A be a σ-algebra on E. Then AF – tM X F,M P Au is a σ-algebra on F
called the induced σ-algebra.

Proof:

Step 1: Non-emptiness

AF is non-empty since it is the case for A.

Step 2: Closeness under complement

Let M X F P AF , then

F z pM X F q “ F zM “ M c
loomoon

PA

XF P AF

(the complements are here understood inside of E).

Step 3: Closeness under countable union

Let pMn X F qnPN Ď AF ,

ď

nPN

pMn X F q “

˜

ď

nPN

Mn

¸

looooomooooon

PA

XF P AF

Remark I.6: Relation between generated and induced σ-algebras

We ask about the relation between AF and σ ptM P A|M Ď F uq (generated inside of F ):

• AF is a σ-algebra on F and tM P A|M Ď F u Ď AF so σ ptM P A|M Ď F uq Ď AF .

• If F P A then @M P A,M X F P A and M X F Ď F so

AF Ď tM P A|M Ď F u Ď σ ptM P A|M Ď F uq

and thus AF “ σ ptM P A|M Ď F uq

If F ‰ A we can have equality or not
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• Let E – t0, 1u ,A – tH, t0, 1uu , F – t0u, we have

AF “ tH, t0uu

σ ptM P A|M Ď F uq “ σ ptHuq “ tH, t0uu

so AF “ σ ptM P A|M Ď F uq.

• Let E – t0, 1, 2, 3u ,A – tH, t0, 1u , t2, 3u , t0, 1, 2, 3uu , F – t0, 2u, we have

AF “ tH, t0u , t2u , t0, 2uu

σ ptM P A|M Ď F uq “ σ ptHuq “ tH, t0, 2uu

so σ ptM P A|M Ď F uq Ă AF .

Definition I.7: Borel sets

Let T – tO Ď R|O is openu, BpRq – σpT q is called the Borel σ-algebra on R and its
elements are called Borel sets.

The Borel σ-algebra is huge as it has to contain

• Open and closed sets

• Countable intersection of open sets, countable unions of closed sets

• Countable unions of countable intersection of open sets, countable intersection of countable
unions of closed sets

• . . .

Definition I.8: Dynkin system (λ-system)

D Ď PpEq is a Dynkin system if

‚ E P D
‚ @N,M Ď D,M Ď N ùñ NzM P D
‚ @ pMnqnPN Ď D Õ,

ď

nPN

Mn P D

Let M Ď PpEq,

λpMq –
č

D Dynkin system on E
MĎD

D

is the smallest Dynkin system containing M. λpMq is called the Dynkin system generated
by M.

Some facts:
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• σ-Algebras are Dynkin systems.

• A Dynkin system is closed under complement and non-increasing intersections.

• tH, t0, 1u , t2, 3u , t1, 2u , t0, 3u , t0, 1, 2, 3uu is a Dynkin system in t0, 1, 2, 3u that is not a
σ-algebra. Indeed it is not closed under union as t0, 1u Y t0, 2u “ t0, 1, 2u R D

• On a finite set E the closeness under increasing countable unions is always satisfied.

The advantage of Dynkin systems is that they are easier to construct than σ-algebras and
can be used to obtain σ-algebras with the following result.

Proposition I.9

A Dynkin system which is closed under intersection if a σ-algebra.

Proof:

Let D Ď PpEq be a Dynkin system closed under intersection. D is non-empty and closed
under complement so it is also closed under finite unions.
Let pMnqnPN Ď D and define

ĂMn –

n
ď

i“0

Mi P D

then,
´

ĂMn

¯

nPN
is non-decreasing so

ď

nPN

ĂMn “
ď

nPN

Mn P D

Theorem I.10: Dynkin

Let M Ď PpEq be non-empty and stable under intersection (M is called a π-system), then

• λpMq “ σpMq.

• if D is a Dynkin system such that M Ď D then σpMq Ď D.

For the moment, it is hard to see the usefulness of such an abstract theorem, but this will
later lead to uniqueness of some measures. From this follows a Dynkin theorem about measures
stating that if two measures coincide on M then they do so on λpMq “ σpMq. For example this
can be applied to intervals if one let M – tsa, br, a, b P Ru, then σpMq “ BpRq. The conclusion
is that only one measure on BpRq can extend the length of open intervals.

Proof:

σpMq is a Dynkin system and M Ď σ pMq hence λpMq Ď σpMq.
For the converse inclusion we prove that λpMq is closed under intersection so λpMq will be
σ-algebra containing M. To move toward that goal, we prove that given A P λpMq,

µpAq – tB P λpMq|A X B P λpMqu

10



is a Dynkin system:

• E P λpMq and A X E “ A P λpMq so E P µpAq

• Let B1, B2 P µpAq such that B1 Ď B2, we have B2zB1 P λpMq and

A X pB2zB1q “ pA X B2q
looomooon

PλpMq

zA X B1
loomoon

PλpMq

P λpMq

since A X B1 Ď A X B2. So B2zB1 P µpAq.

• Let pBnqnPN Ď µpAq Õ, then

A X
ď

nPN

Bn “
ď

nPN

pA X Bnq
loooomoooon

PλpMq,Õ

P λpMq

so
Ť

nPN Bn P µpAq.

Let A P λpMq, our goal is to prove that µpAq “ λpMq, i.e. that λpMq is closed under
intersection.
First, assume that B P M, then M Ď µpBq as M is closed under intersection. Since µpBq

is a Dynkin system, λpMq Ď µpBq and by construction λpMq “ µpBq. We deduce that
A P µpBq meaning that A X B P λpMq thus B P µpAq. We proved that M Ď µpAq so it
follows that µpAq “ λpMq.
The second point is a direct consequence of the first as

σpMq “ λpMq Ď λpDq “ D
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II Constructing measures

Let pE,Aq be a measurable space.

Definition II.1: Measure

µ : A ÞÑ R` is called a measure if

‚ µpHq “ 0

‚ @ pMnqnPN Ď A disjoints, µ

˜

ď

nPN

Mn

¸

“
ÿ

nPN

µpMnq (σ-additivity)

pE,A, µq is then called a measured space.

Example II.2

• The counting measure on pE,PpEqq defined @M P PpEq by

#pMq –

#

card(M) if M is finite
`8 else

• The dirac mass at a P E defined @M P PpEq by

δapMq – 1Mpaq

Let pE,A, µq be a measured space.

Definition II.3: Vocabulary

µ is said to be

‚ finite if µpEq ă `8

‚ σ-finite if D pMnqnPM Ď A|E “
ď

nPN

Mn and @n P N, µpMnq ă `8

‚ a probability if µpEq “ 1

If E is a topological space and A “ BpEq then µ is called a Borel measure. It is also called
locally finite if it is finite on compacts sets. Additionally, we define its support to be

supppµq –
č

F closed|µpF cq“0

F

The support of a Borel measure is the smallest closed set containing all the mass (of 0
measure complement).

On a finite set # is finite, on a countable set it is σ-finite, on a non countable set it is neither
of both.
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δa is a probability measure and supp pδaq “ tau.

Proposition II.4: Basic properties of measures

1. µ is non-decreasing: if M,N P A|M Ď N then µpMq ď µpNq.

Moreover if µpMq ă `8, µpNzMq “ µpNq ´ µpMq

Let pMnqnPN Ď A, then

2. monotonous limit and measure exchange:

pMnqnPN Õ ùñ µ

˜

ď

nPN

Mn

¸

“ lim
nPN

µpMnq

pMnqnPN Œ ùñ µ

˜

č

nPN

Mn

¸

“ lim
nPN

µpMnq

3. σ-sub-additivity:

µ

˜

ď

nPN

Mn

¸

ď
ÿ

nPN

µpMnq

Proof:

1. Since N “ M \ pNzMq,

µpNq “ µpMq ` µpNzMq ě µpMq

Moreover if µpMq ă `8, µpNzMq “ µpNq ´ µpMq.

2. For pMnqnPN Œ, let ĂM0 – M0 and @n P N, ĂMn`1 – Mn`1zMn. Let @n P N, p P N˚,
since ĂMn Ď Mn and Mn Ď Mn`p´1,

ĂMn`p X ĂMn Ă pMn`pzMn`p´1q X Mn “ Mn`p X pMnzMn`p´1q “ Mn`p X H “ H

so p ĂMnqnPN are disjoints. Then
p
ď

i“0

ĂMi “ M0 X pM1zM0q Y ¨ ¨ ¨ Y pMpzMp´1q “

p
ď

i“0

Mi “ Mp

ď

iPN

ĂMi “
ď

iPN

Mi

so

µpMpq “

p
ÿ

i“0

µ
´

ĂMi

¯

and

µ

˜

ď

nPN

Mn

¸

“ µ

˜

ď

nPN

ĂMn

¸

“
ÿ

nPN

µpĂMnq “ lim
nÑ8

n
ÿ

i“0

µpĂMiq “ lim
nÑ8

µpMnq
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For pMnqnPN Œ, if the intersection has `8 as measure the equality is trivial since
@n P N, µpMnq “ `8. Otherwise we pass to the complement: @n P N, ĂMn – M0zMn

so pĂMnqnPN Õand

µ

˜

ď

nPN

ĂMn

¸

“ µ

˜

M0z
č

nPN

Mn

¸

“ ´µ

˜

č

nPN

Mn

¸

“ lim
nÑ8

p ĂMnq “ µpM0q ´ lim
nÑ8

µpMnq

hence

µ

˜

č

nPN

Mn

¸

“ lim
nÑ8

µpMnq

3. Starting with M,N P A, since NzM Ď N

µpM Y Nq “ µpNq ` µpNzMq ď µpNq ` µpMq

By induction this extend to finite families, and by the previous point

µ

˜

ď

nPN

Mn

¸

“ lim
nÑ8

µ

˜

n
ď

i“0

Mi

¸

ď lim
nÑ8

n
ÿ

i“0

µpMiq “
ÿ

nPN

µpMnq

Theorem II.5: Dynkin theorem for measures

Let M Ď PpEq be closed under intersection and such that E P M. Let µ, ν be two finite
measures on pE, σpMqq such that µ|M “ ν|M, then µ “ ν.

Proof:

We prove that D – tM P σpMq|µpMq “ νpMqu is a Dynkin system:

‚ E P M Ď D
‚ M,N P D|M Ď N ùñ µpNzMq “ µpNq ´ µpMq “ νpNq ´ νpMq “ νpNzMq

‚ pMnqnPN Ď D Õ ùñ µ

˜

ď

nPN

Mn

¸

“ lim
nÑ8

µpMnq “ lim
nÑ8

νpMnq “ ν

˜

ď

nPN

Mn

¸

so by the Dynkin theorem for σ-algebras, since we have that M Ď D, we conclude that
σpMq Ď D hence µ “ ν.

Note that the last point of the proof that D is a Dynkin system really relies on the fact that
the sequence pMnqnPN is non-decreasing to be able to exchange the limits and the measures. We
cannot use this proof on σ-algebra directly hence the need to introduce Dynkin systems.
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Definition II.6: induced measure

Let F P A then µF – µ|AF
is a measure on pF,AF q called the induced measure on F .

If µpF q ă `8 then µF is the only measure on pF,AF q that coincide with µ on
tM P A|M Ď F u.

Proof:

Since F P A, we have that AF Ď A and µF is a measure on pF,AF q.
The uniqueness of µF is a consequence of Remark I.6 which implies that

AF “ σ ptM P A|M Ď F uq

and of Theorem II.5.

Definition II.7: limits of sets

Let pMnqnPN Ď PpEq, we define

lim inf
nÑ8

Mn –
ď

nPN

8
č

i“n

Mi

lim sup
nÑ8

Mn –
č

nPN

8
ď

i“n

Mi

If these two sets are equal it is then called the limit of pMnqnPN.

Some basics facts:

‚ lim inf
nÑ8

Mn Ď lim sup
nÑ8

Mn

‚ pMnqnÑ8
Õ ùñ lim inf

nÑ8
Mn “

ď

nÑ8

Mn

‚ pMnqnÑ8
Œ ùñ lim sup

nÑ8

Mn “
č

nÑ8

Mn

Lemma II.8: Borel-Cantelli

Let pMnqnPN Ď A, then

ÿ

nPN

µpMnq ă `8 ùñ µ

ˆ

lim sup
nÑ8

Mn

˙

“ 0

This is not to be confused with the basic fact about convergent series

lim sup
nÑ8

µpMnq “ µ

˜

č

nPN

8
ď

i“n

Mi

¸

By monotonicity it also follows that

µ
´

lim inf
nÑ8

Mn

¯

“ 0
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Proof:

By monotonicity and σ-sub-additivity,

µ

ˆ

lim sup
nÑ8

Mn

˙

“ µ

˜

č

nPN

8
ď

i“n

Mi

¸

ď µ

˜

8
ď

i“n

Mi

¸

ď

8
ÿ

i“n

µpMnq Ñ
nÑ8

0

Definition II.9: Negligible sets

• Negligible sets of pE,A, µq are elements of

Nµ – tN P PpEq|DM P A|N Ď M and µpMq “ 0u

• If DN P Nµ such that a proposition Px is true @x P EzN then Px is said to be true
µ ´ a.e. (almost everywhere).

• If Nµ Ď A, then pE,A, µq is called complete.

Example II.10

The absolute value is almost everywhere continuous for every measure that evaluate t0u to 0.

The problem of a measure space not being complete is that we miss on the opportunity to
measure sets whose measure should obviously be 0 since they are included in a measurable set
of 0 measure. But we have a general process to make all measure complete by extending them
to a lager σ-algebra.

Proposition II.11: Completion of measures

The following is a σ-algebra called the completed σ-algebra:

Aµ
– tM P PpEq|DN1, N2 P A|N1 Ď M Ď N2 and µpN2zN1q “ 0u (II.1)

and

1. Aµ
“ σpA Y Nµq

2. The following it a well defined measure on pE,Aµ
q called the completed measure:

µ :
Aµ

Ñ R`

M ÞÑ µpN1q “ µpN2q

Moreover, µ is the unique measure on pE,Aµ
q extending µ.

3. pE,Aµ
, µq is complete.

Proof:

Try it yourself following Subsection VII.1.

1. Step 1: Aµ
Ď σpA Y Nµq

16



Let M P Aµ and N1, N2 according to (II.1), then MzN1 Ď N2zN1 P A so MzN1 P Nµ

and

M “ pMzN1
loomoon

PNµ

q Y N1
loomoon

PA

P σpA Y Nµq

Step 2: A Y Nµ Ď Aµ

Taking N1 “ N2 “ M we see that A Ď Aµ.

Let N P Nµ, then DM P A such that N Ď M and µpMq “ 0, thus choosing N1 “ H

and N2 “ M we get that N P Aµ.

Step 3: Aµ is a σ-algebra

• A Ď Aµ so Aµ
‰ H

• Let M P Aµ and N1, N2 according to (II.1), we prove that M c P Aµ by noticing
that N c

2 Ď M c Ď N c
1 and N c

1 , N
c
2 P A and N c

1zN c
2 “ N2zN1.

• Let pMnqnPN Ď Aµ and pN1,n, N2,nqnPN according to (II.1), then
ď

nPN

N1,n

looomooon

PA

Ď
ď

nPN

Mn Ď
ď

nPN

N2,n

looomooon

PA

and
˜

ď

nPN

N2,n

¸

z
ď

nPN

N1,n Ď
ď

nPN

N2,nzN1,n

so by σ-sub-additivity,

µ

˜˜

ď

nPN

N2,n

¸

z
ď

nPN

N1,n

¸

ď
ÿ

nPN

µpN2,nzN1,nq “ 0

This proves that
ď

nPN

Mn P Aµ

Step 4: Conclusion

The two previous steps imply that A Y Nµ Ď Aµ

2. Step 5: µ is well defined

17



Let M P A
µ and assume that DN1, N2, rN1, rN2 P A such that

N1 Ď M Ď N2
rN1 Ď M Ď rN2

µpN2zN1q “ µ
´

rN2z rN1

¯

“ 0

First remark that

µpN2q “ µpN2zN1q ` µpN1q “ µpN1q

and similarly µp rN2q “ µ
´

rN1

¯

. Then, since

´

N2 X rN2

¯

zN1
loooooooomoooooooon

PA

Ď N2zN1

we get that
´

N2 X rN2

¯

zN1 “ 0 so

µ
´

N2 X rN2

¯

“ µpN1q

Exchanging the roles of N1, N2 and rN1, rN2, we obtain

µ
´

N2 X rN2

¯

“ µ
´

rN1

¯

so µpN1q “ µpN2q “ µ
´

rN1

¯

“ µ
´

rN2

¯

.

Step 6: µ extends µ

If M P A, taking N1 “ N2 “ M we see that

µpMq “ µpN1q “ µpMq

Step 7: µ is a measure

• Since H P A, µpHq “ µpHq “ 0.

• Let pMnqnPN Ď Aµ˚

disjoints and pN1,nqnPN according to (II.1) which are also
disjoints since @n P N, N1,n Ď Mn. Hence

µ

˜

ď

nPN

Mn

¸

“ µ

˜

ď

nPN

N1,n

¸

“
ÿ

nPN

µ pN1,nq “
ÿ

nPN

µpMnq

Step 8: Uniqueness
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Assume that η is another measure on pE,Aµ
q such that η|A “ µ. Let M P Aµ and

N1, N2 according to (II.1), then

ηpMq “ ηpMzN1q ` ηpN1q

But

ηp N1
loomoon

PA

q “ µpN1q “ µpMq and ηpMzN1q ď ηpN2zN1
loomoon

PA

q “ µpN2zN1q “ 0

so ηpMq “ µpMq.

3. Let M P Aµ and N1, N2 according to (II.1). Assume that µpMq “ 0 and let N Ď M .
Then N Ď N2 P A and µpN2q “ µpMq “ 0 so N P Nµ Ď Aµ.
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III Lebesgue’s measure

Definition III.1: Outer measure

µ˚ : PpEq Ñ R` is an outer measure on E if

‚ µ˚
pHq “ 0

‚ µ˚ is non decreasing: @M,N P PpEq,M Ď N ùñ µ˚
pMq ď µ˚

pNq

‚ µ˚ is σ-sub-additive: @pMnqnPN Ď PpEq, µ˚

˜

ď

nPN

Mn

¸

ď
ÿ

nPN

µ˚
pMnq

In addition, M P PpEq is called µ˚-measurable if @N P PpEq,

µ˚
pNq “ µ˚

pN X Mq ` µ˚
pNzMq

and the set of µ˚-measurable sets is denoted Aµ˚ .

Remark that with the σ-sub-additivity, it is enough the check that

@N P PpEq, µ˚
pNq ě µ˚

pN X Mq ` µ˚
pNzMq

to prove the µ˚-measurability of M .

Definition III.2: Lebesgue outer measure

Let M Ď R, define

IpMq –

#

pan, bnqnPN |@n P N, an ď bn and M Ď
ď

nPN

san, bnr

+

l˚pMq “ inf
pan,bnqnPNPIpMq

ÿ

nPN

pbn ´ anq

IpMq is the set of open intervals covering of M . Given such a covering pan, bnqnPN P IpMq,
the value

ÿ

nPN

pbn ´ anq

is an upper bound of what we would to define as the length of M . This taking the infimum
over IpMq we attribute to M the length of the smallest possible covering by open intervals (the
minimizer might not exists).

Proof:

First, note that @M Ď R, IpMq ‰ H since p´n, nqnPN P IpMq as

M Ď R “
ď

nPN

s ´ n, nr

So the Lebesgue outer measure is well defined as an infimum over positive values.
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We check that l˚ is indeed an outer measure:

• p0, 0q P IpHq so l˚pHq ď 0 ´ 0 “ 0

• Let M,N P PpRq|M Ď N , a covering of N is a covering of M so IpNq Ď IpMq and as
a consequence l˚pMq ď l˚pNq.

• Let pMnqnPN Ď PpEq, let ϵ ą 0, then by property of the infimum, @n P

N, Dpan,m, bn,mqmPN P IpMnq such that

l˚pMnq ě
ÿ

mPN

pbn,m ´ an,mq ´
ϵ

2n

then
ď

nPN

Mn Ď
ď

n,mPN

san,m, bn,mr

which means that

pan,m, bn,mqn,mPN P I

˜

ď

nPN

Mn

¸

so

l˚

˜

ď

nPN

Mn

¸

ď
ÿ

n,mPN

pbn,m ´ an,mq ď
ÿ

nPN

´

l˚pMnq `
ϵ

2n

¯

“
ÿ

nPN

l˚pMnq ` 2ϵ

and one gets σ-sub-additivity of l˚ by taking ϵ Ñ 0.

Proposition III.3

1. @a ď b, l˚pra, bsq “ b ´ a

Let M P PpRq, λ P R we denote λM – tλx, x P Mu and λ ` M – tλ ` x, x P Mu.

2. l˚ is translation invariant: l˚pλ ` Mq “ l˚pMq

3. l˚ scaled with dilatations: l˚pλMq “ |λ| l˚pMq

Proof:

1. Let ϵ ą 0, sa´ϵ, b`ϵrP Ipra, bsq so l˚pra, bsq ď b´a`2ϵ. Taking ϵ Ñ 0, l˚prA, bsq ď b´a.

Let pan, bnqnPN P Ipra, bsq, by compactness of ra, bs, DN P N such that

ra, bs Ď

N
ď

n“0

san, bnr
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then we can prove by induction (Exercice) that

b ´ a ď

N
ÿ

n“0

pbn ´ anq

so

N
ÿ

nPN

pbn ´ anq ě b ´ a

and passing to the infimum, l˚pra, bsq ě b ´ a.

2. Note that

pan, bnqnPN P Ipλ ` Mq ðñ λ ` M Ď
ď

nPN

san, bnr ðñ M Ď
ď

nPN

san ´ λ, bn ´ λr

ðñ pan ´ λ, bn ´ λqnPN P IpMq

so

l˚pλ ` Mq “ inf
pan´λ,bn´λqnPNPIpMq

ÿ

nPN

pbn ´ anq “ inf
pan,bnqnPNPIpMq

ÿ

nPN

pbn ´ λ ´ an ` λq

“ l˚pMq

3. Similar, see notes

Proposition III.4: From outer measure to measure
´

E,Aµ˚ , µ˚
|Aµ˚

¯

is a complete measured space.

Proof:

Try it yourself following Subsection VII.2.

Step 1: Aµ˚ is closed under intersection

Let A,B P Aµ˚ and N P PpEq. Decomposing N with respect to A and then N X A and
N X Ac with respect to B we obtain

µ˚
pNq “ µ˚

pN X Aq ` µ˚
pN X Ac

q

“ µ˚
pN X A X Bq ` µ˚

pN X A X Bc
q ` µ˚

pN X Ac
X Bq ` µ˚

pN X Ac
X Bc

q (III.1)

Applying this to N X pA Y Bq instead of N one gets

µ˚
pN X pA Y Bqq “ µ˚

pN X A X Bq ` µ˚
pN X A X Bc

q ` µ˚
pN X Ac

X Bq (III.2)

since

pA Y Bq X pA X Bq “ A X B
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pA Y Bq X pA X Bc
q “ A X Bc

pA Y Bq X pAc
X Bq “ Ac

X B

pA Y Bq X pAc
X Bc

q “ H

Inserting (III.2) in (III.1) we obtain

µ˚
pNq “ µ˚

pN X pA Y Bqq ` µ˚
pN X Ac

X Bc
q

meaning that A Y B P Aµ˚

Step 2: Disjoint unions

Assuming that A X B “ H, since A Ď Bc and B Ď Ac, (III.2) becomes

µ˚
pN X pA Y Bqq “ µ˚

pN X Aq ` µ˚
pN X Bq

By induction, this generalizes to: @n P N, @pAiqi“0:n Ď Aµ˚ disjoints,

µ˚

˜

N X

˜

n
ď

i“0

Ai

¸¸

“

n
ÿ

i“0

µ˚
pN X Aiq (III.3)

Step 3: Aµ˚ is a σ-algebra

• Let N P PpEq,

µ˚
pNq “ µ˚

pN X Hq ` µ˚
pN X Eq

so H P Aµ˚ .

• By definition of Aµ˚ , M P Aµ˚ ðñ M c P Aµ˚ so Aµ˚ is closed under complement.

• Let pMnqnPN Ď Aµ˚ , define

ĂM0 – M0

@n P N, ĂMn`1 – Mn`1z

n
ď

i“0

Mi

so that @n P N,
n
ď

i“0

Mi “

n
ď

i“0

ĂMi P Aµ˚

and
´

ĂMn

¯

nPN
are not disjoints. Let N P PpEq, we can apply (III.3) and then use the

monotonicity of µ˚:

µ˚
pNq “ µ˚

˜

N X

n
ď

i“0

ĂMi

¸

` µ˚

˜

N X

˜

n
ď

i“0

ĂMi

¸c¸
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“

n
ÿ

i“0

µ˚
´

N X ĂMi

¯

` µ˚

˜

N X

˜

n
ď

i“0

Mi

¸c¸

ě

n
ÿ

i“0

µ˚
´

N X ĂMi

¯

` µ˚

˜

N X

˜

ď

iPN

Mi

¸c¸

Taking the limit n Ñ 8 and using σ-sub-additivity,

µ˚
pNq ě

ÿ

iPN

µ˚
´

N X ĂMi

¯

` µ˚

˜

N X

˜

ď

iPN

Mi

¸c¸

ě µ˚

˜

ď

iPN

pN X ĂMiq

¸

` µ˚

˜

N X

˜

ď

iPN

Mi

¸c¸

“ µ˚

˜

N X
ď

iPN

ĂMi

¸

` µ˚

˜

N X

˜

ď

iPN

Mi

¸c¸

“ µ˚

˜

N X
ď

iPN

Mi

¸

` µ˚

˜

N X

˜

ď

iPN

Mi

¸c¸

(III.4)

meaning that
ď

iPN

Mi P Aµ˚

Step 4: µ|Aµ˚ is a measure

With the previous conclusion we now know that (III.4) is an equality so

µ˚
pNq “

ÿ

iPN

µ˚
´

N X ĂMi

¯

` µ˚

˜

N X

˜

ď

iPN

Mi

¸c¸

Assuming that pMnqnPN are disjoint, @i P N, ĂMi “ Mi, so by choosing

N –
ď

nPN

Mn

we get

µ˚

˜

ď

nPN

Mn

¸

“
ÿ

iPN

µ˚

˜˜

ď

nPN

Mn

¸

X Mi

¸

` µ˚

˜˜

ď

nPN

Mn

¸

X

˜

ď

iPN

Mi

¸c¸

“
ÿ

nPN

µ˚
pMnq

µ˚pHq “ 0 so µ˚
|Aµ˚

is a measure.

Step 5: completeness

Let M P Aµ˚ with µ˚pMq “ 0 and A Ď M . Let N P PpEq, since N X A Ď M ,

µ˚
pN X Aq ` µ˚

pN X Ac
q ď µ˚

pMq ` µ˚
pNq “ µ˚

pNq

so A P Aµ˚ .
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Definition III.5: Lebesgue sets

The Lebesgue σ-algebra on R is LpRq – Al˚ , its elements are called real Lebesgue sets and
the Lebesgue measure on R is l – l˚

|LpRq

Theorem III.6

LpRq “ BpRq

We have the following strict inclusions (see tutorials)

BpRq Ă LpRq Ă PpRq

We notice that we provided two different constructions of the Lebesgue σ-algebra:

• BpRq the completion of the Borel σ-algebra which is well suited for proving that sets are
Lebesgue sets (for example all Borel sets are immediately Lebesgue sets).

• Al˚ which is interesting to compute the Lebesgue measure of a given measurable sets
using the explicit defintion of l˚. Since we proved it for the Lebesgue outer measure, we
know that the Lebesgue measure evaluate each real interval to its length.

A closed interval ra, bs is a Borel set thus it is a Lebesgue set, so using Proposition III.3,

lpra, bsq “ l˚pra, bsq “ b ´ a

so

lpsa, bsq “ lpra, bsq ´ lptauq “ lpra, bsq

and similarly

lpra, bsq “ lpsa, bsq “ lpra, brq “ lpsa, brq

Another consequence is that if M P LpRq is countable,

lpMq “ l

˜

ď

xPM

txu

¸

“
ÿ

xPM

lptxuq “
ÿ

xPM

0 “ 0

Since Q P LpRq is a Borel set as countable union of closed sets, we obtain that lpQq “ 0.

Finally, we remark that l is σ-finite since

@n P N, lpr´n, nsq “ 2n and R “
ď

nPN

r´n, ns
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Proof:

Step 1: BpRq Ď LpRq

Since BpRq “ σpts ´ 8, ar, a P Ruq it is sufficient to prove that @a P R, s ´ 8, arP LpRq. Let
a P R, N P PpEq, our goal is to prove that

l˚p s ´ 8, ar q “ l˚p s ´ 8, ar XNq ` l˚p s ´ 8, ar zNq

Let pan, bnqnPN P IpNq, ϵ ą 0, we have that

san, bnr X s ´ 8, ar “ sminpa, anq,minpa, bnqr

san, bnr Xra,`8r Ď smaxpa, anq ´
ϵ

2n
,maxpa, bnqr

so

s ´ 8, ar XN Ď
ď

nPN

sminpa, anq,minpa, bnqr

s ´ 8, ar zN Ď
ď

nPN

smaxpa, anq ´
ϵ

2n
,maxpa, bnqr

and

l˚p s ´ 8, ar XNq ` l˚p s ´ 8, ar zNq

ď
ÿ

nPN

´

minpa, bnq ´ minpa, anq ` maxpa, bnq ´ maxpa, anq `
ϵ

2n

¯

“
ÿ

nPN

pa ` bn ´ a ´ anq ` 2ϵ Ñ
ϵÑ0

ÿ

nPN

pbn ´ anq

Taking the infimum over IpNq, we obtain that

l˚p s ´ 8, ar XNq ` l˚p s ´ 8, ar zNq ď l˚pNq

Step 2: BpRq Ď LpRq

Assume that N P PpEq is a negligible set of pR,BpRq, lq, then DM P BpRq such that N Ď M
and lpMq “ 0. But LpRq is complete and M P LpRq so N P LpRq. Therefore

N l|BpRq Y BpRq Ď LpRq

Moreover LpRq is a σ-algebra so

BpRq “ σ
`

N l|BpRq Y BpRq
˘

Ď LpRq

Step 3: LpRq Ď BpRq

Let M P LpRq we construct a bigger Borel set of same measure.
@k P N˚, Dpan,k, bn,kqnPN P IpMq such that

l˚pMq ě
ÿ

nPN

pbn,k ´ an,kq ´
1

k
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Then, let

BM –
č

kPN˚

ď

nPN

san,k, bn,kr P BpRq

Then @k P N˚,

l˚pBMq ď l˚

˜

ď

nPN

san,k, bn,kr

¸

ď
ÿ

nPN

pbn,k ´ an,kq ď l˚pMq `
1

k

so l˚pBMq ď l˚pMq. Since M Ď BM the proved that l˚pBMq “ lpBMq “ l˚pMq “ lpMq.
Applying this to Mn – r´n, ns XM,Nn – r´n, nszMn P LpRq we get BMn , BNn P BpRq such
that

Mn Ď BMn

Nn Ď BNn

l pBMnq “ l pMnq

l pBNnq “ l pNnq “ 2n ´ lpMnq

so r´n, nszBNn Ď r´n, nszNn “ Mn Ď BMn and

l pBMnz pr´n, nszBNnqq “ l pBMnq ´ p2n ´ l pBNnqq “ l pBMnq ´ l pBMnq “ 0

so Mn P BpRq and

M “
ď

nPN

Mn P BpRq

Theorem III.7: Characterization of the Lebesgue measure

The Lebesgue measure is the unique measure on pR,LpRqq extending the length of intervals.

Proof:

Let µ be another measure on pR,LpRqq such that @a ď b, µpra, bsq “ b ´ a. Then @n P

N, µpr´n, nsq “ lpr´n, nsq “ 2n. By Theorem II.5,

µ|Bprn,´nsq “ l|Bprn,´nsq

Let M P BpRq and denote Mn – M X r´n, ns P Bpr´n, nsq (exercice), then

lpMq “ l

˜

ď

nPN

Mn

¸

“ lim
nÑ8

lpMnq “ lim
nÑ8

µpMnq “ µ

˜

ď

nPN

Mn

¸

“ µpMq

So

µ|BpRq “ l|BpRq
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and by uniqueness of the completed measure (Proposition II.11)

µ
|BpRq

“ l
|BpRq

but since BpRq “ LpRq (Theorem III.6) we conclude that µ “ l.

Proposition III.8

Let M P PpRq, λ P R

• l is translation invariant: lpλ ` Mq “ lpMq

• l scaled with dilatations: lpλMq “ |λ| lpMq

Proof:

Step 1: LpRq is closed under translation:

Let M P LpRq, N P PpRq, λ P R,

l˚ pN X pλ ` Mqq ` l˚pNzpλ ` Mqq “ l˚pλ ` pN ´ λq X Mq ` l˚pλ ` pN ´ λqzMq

“ l˚ppN ´ λq X Mq ` l˚ppN ´ λqzMq

“ l˚pN ´ λq “ l˚pNq

so λ ` M P LpRq.

Step 2: LpRq is closed under dilatations:

Let M P LpRq, N P PpRq, λ P R, if λ “ 0, then λM “ t0u P LpRq. Otherwise,

l˚ pN X pλMqq ` l˚pNzpλMqq “ l˚
`

λ
`

pλ´1Nq X M
˘˘

` l˚
`

λ
`

pλ´1NqzM
˘˘

“ |λ| l˚
`

pλ´1Nq X M
˘

` |λ| l˚
`

pλ´1NqzM
˘

“ |λ| l˚
`

λ´1N
˘

“ l˚pNq

so λM P LpRq.

Step 3: Conclusion:

l inherit the properties of l˚ from Proposition III.3 on LpRq since l “ l˚
|LpRq

.

Theorem III.9: Translation invariant and scaling characterization of l

Let µ be a measure on pR,LpRqq, with µpr0, 1sq ă `8,

1. If µ is translation invariant, then µ “ µpr0, 1sq ¨ l

2. If @M P LpRq, @λ P R, µpλMq “ |λ|µpMq then µpr0, 1sq ¨ l.

Fixing µpr0, 1sq implies that µ “ l in the above statements. Thus, l is the only translation
invariant measure on pR,LpRqq such that µpr0, 1sq “ 1.
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Proof:

1. Assume by contradiction that Dx P E|µptxuq ą 0 then µ “ µptxuq ¨ # and µpr0, 1sq “

`8. So @x P E, µptxuq “ 0.

Let p
q

P Q,

µpr0, 1sq “

q´1
ÿ

n“0

µ

ˆ„

n

q
,
n ` 1

q

ȷ˙

“ qµ

ˆ„

0,
1

q

ȷ˙

and similarly

µ

ˆ„

0,
p

q

ȷ˙

“ pµ

ˆ„

0,
1

q

ȷ˙

“
p

q
µpr0, 1sq

Let x P R and
´

pn
qn

¯

nPN
Ď Q a non-increasing sequence such converging to x,

µpr0, xsq “ µ

˜

č

nPN

„

0,
pn
qn

ȷ

¸

“ lim
nÑ8

µ

ˆ„

0,
pn
qn

ȷ˙

“ lim
nÑ8

pn
qn

µpr0, 1sq “ xµpr0, 1sq

if µpr0, 1sq “ 0 then µ “ 0 and the result is satisfied, otherwise µpr0, 1sq´1µ extends
the length of intervals to by Theorem III.7, µpr0, 1sq´1µ “ l.

2. From

µpt0uq ` 2µp s0, 1sq “ µpt0uq ` µp s0, 2sq “ µpr0, 2sq “ 2µpr0, 1sq

“ 2 pµpt0uq ` µp s0, 1sqq

it follows that µpt0uq “ 0.

Assume by contradiction that Da P R˚|µptauq ą 0, then @x P R,

µptxuq “ |x|µpt1uq “

ˇ

ˇ

ˇ

x

a

ˇ

ˇ

ˇ
µptauq

so µpr0, 1sq “ `8. Thus, @x P R, µptxuq “ 0.

Let x P R`,

µpr0, xsq “ xµpr0, 1s “ µpr´x, 0sq

so

if 0 ď a ď b, then µpra, bsq “ µpr0, bsq ´ µpr0, asq “ pb ´ aqµpr0, 1sq

if 0 ď a ď b, then µpra, bsq “ µpra, 0sq ` µpr0, bsq “ p´a ` bqµpr0, 1sq

if 0 ď a ď b, then µpra, bsq “ µpra, 0sq ´ µprb, 0sq “ p´a ´ p´bqqµpr0, 1sq

The conclusion is then the same than for the translation invariant case.
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IV Measurable functions

Let pE,Aq and pF, βq be two measurable sets.

Definition IV.1: Measurable function

A function f : pE,Aq Ñ pF, βq is called measurable is @M P β, f´1pMq P A

This is analogous to continuous functions as f : R Ñ R is continuous if and only if @O Ď R
open, f´1pOq is open.

Let M P PpEq, 1M : pE,Aq Ñ pt0, 1u ,P pt0, 1uqq is measurable (as a function) if and only
if M P A (M is measurable as a set). This follows from 1´1

M pt1uq “ M and 1´1
M pt0uq “ M c.

Next we check that the measurability of a function is unchanged if one restrict the codomain
of the function to its range.

Proposition IV.2

f : pE,Aq Ñ pF, βq is measurable if and only if f : pE,Aq Ñ
`

ranpfq, βranpfq

˘

Proof:

Recalling that

βranpfq “ tM X ranpfq,M P βu

the result follows from the fact that @M P β,

f´1
pMq “ f´1

pM X ranpfqq

We only need to check measurability on the generators of a σ-algebra:

Proposition IV.3

Let M Ď F, f : pE,Aq Ñ pF, σpMqq is measurable if and only if @M P M, f´1pMq P A

Proof:

Assume that @M P M, f´1pMq P A, we define

Af –
␣

M P σpMq|f´1
pMq

(

By construction, M Ď Af . Then we proove that Af is a σ-algebra:

• f´1pF q “ E P A so E P Af

• Let M P Af , f´1pM cq “ f´1pMqc P A so M c P Af

• Let pMnqnPN Ď Af , then

f´1

˜

ď

nPN

Mn

¸

“
ď

nPN

f´1
pMnq P A
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sp
ď

nPN

Mn P Af

This implies that σpMq Ď Af hence σpMq “ Af meaning that f is measurable. The
contraposition simply follows from the fact that M Ď σpMq.

As a corollary, all continuous functions are measurable with respect to the Borel σ-algebras.
Indeed a Borel σ-algebra if generated by open sets and the pre-imagine of an open set by a
continuous function is an open set.

Proposition IV.4

1. Let f : pE,Aq Ñ pF, βq and g : pF, βq Ñ pG,Γq be two measurable functions, then
g ˝ f : pE,Aq Ñ pG,Γq is measurable.

2. Let fn : pE,Aq Ñ pR,BpRqq be a sequence of measurable functions, then

sup
nPN

fn, inf
nPN

fn, lim sup
nÑ8

fn, lim inf
nÑ8

fn

are measurable.

Proof:

1. Let M P Γ then pg ˝ fq´1pMq “ f´1pg´1
pMq

loomoon

Pβ

q P A.

2. Using Proposition IV.3 and

BpRq “ σptsa,`8r, a P Ruq

we only need to prove that @a P R,
ˆ

sup
nPN

fn

˙´1

p sa,`8r q “

"

x P E | sup
nPN

fnpxq ą a

*

“ tx P E | Dn P N | fnpxq ą au

“
ď

nPN

tx P E | fnpxq ą au “
ď

nPN

f´1
n p sa,`8r q
looooooomooooooon

PA

P A

The same holds for the infimum using

BpRq “ σpts ´ 8, ar, a P Ruq

Then we apply this to

lim sup
nÑ8

fn “ inf
nPN

sup
kěn

fk, lim inf
nÑ8

fn “ sup
nPN

inf
kěn

fk
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Theorem IV.5: Limit of measurable functions

Let pX, dq be a metric space and fn : pE,Aq Ñ pX,BpXqq a sequence of measurable functions.
If fn Ñ f pointwise, then f is measurable.

Proof:

Let O be an open set of X. We introduce

g :
X Ñ R
x Ñ dpx,Ocq – infyPOc dpx, yq

Denote On – g´1
` ‰

1
n
,8

“ ˘

,

Step 1: O “
Ť

nPN On

Ď Let x P O. O is open so Dn P N˚ such that

B

ˆ

x,
1

n

˙

Ď O

Thus @y P Oc, dpx, yq ě 1
n

and gpxq ě 1
n

ą 1
n`1

meaning that x P On`1.

Ě x P Oc ùñ gpxq “ 0 so

x P
ď

nPN˚

On ùñ Dn P N˚
| gpxq ą

1

n
ùñ x P O

Step 2: g is continuous

@z P X, dpx, zq ď dpx, yq ` dpy, zq hence taking the infimum over z P Oc we obtain

gpxq ď dpx, yq ` gpyq

thus

gpxq ´ gpyq ď dpx, yq

Exchanging the rôles of x and y we get

gpyq ´ gpxq ď dpy, xq “ dpx, yq

so

|gpxq ´ gpyq| ď dpx, yq

Step 3: M P A
From the previous steps we know that On is open and that

f´1
pOq “

ď

nPN

f´1
pOnq
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so

x P f´1
pOq ðñ Dn P N˚

| lim
kÑ8

fkpxq “ fpxq P On

ðñ Dn P N˚, Dm P N | @k ě m, fkpxq P On

therefore

f´1
pOq “

ď

nPN˚

ď

mPN

č

kěm

f´1
k pOnq
looomooon

PA since On open

P A

Definition IV.6: simple functions

A simple function is a function of the form

s –

n
ÿ

k“0

λk1Mk

with n P N, pλkqJ0,nK Ď R˚ and pMkqkPJ0,nK Ď A disjoints.

Proposition IV.7

Simple functions are measurable and closed under sum and product.

Proof:

Let

s –

n
ÿ

k“0

λk1Mk

be a simple function on pE,Aq. s is valued in t0u Y tλk, J0, nKu and

s´1
pt0uq “

˜

n
ď

k“0

Mi

¸c

P A

@ J0, nK , s´1
ptλkuq “ Mk P A

so s is measurable. Let

h –

m
ÿ

q“0

µq1Nq

be another simple function on pE,Aq and c P R`. Then

sh “

n
ÿ

k“0

m
ÿ

q“0

λkµq1Mk
1Nq “

n
ÿ

k“0

m
ÿ

q“0

λkµq1MkXNq

s ` h “

n
ÿ

k“0

m
ÿ

q“0

pλk ` µqq1MkXNq `

n
ÿ

k“0

λk1Mkz
Ťm

q“0 Nq `

m
ÿ

q“0

µq1Nqz
Ťn

k“0 Mk
(IV.1)
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Simple functions are also closed under multiplication by a non-negative constant since a
non-negative constant is a simple function.

Theorem IV.8

Let f : pE,Aq Ñ R` measurable. Then f is the pointwise increasing limit of non negative
simple functions. If f real valued, then it is the pointwise limit of simple functions.

Proof:

First, we assume that f ě 0

Step 1: Constructing a sequence

Let n P N˚, we decompose

R` “

˜

n2n
ď

k“1

„

k ´ 1

2n
,
k

2n

ȷ

¸

Y rn,`8s

Let

An,k – f´1

ˆ„

k ´ 1

2n
,
k

2n

ȷ˙

Bn – f´1
prn,`8sq

so that

E “

˜

n2n
ď

k“1

An,k

¸

Y Bn

we introduce

fn –

n2n
ÿ

k“1

k ´ 1

2n
1An,k

` n1Bn

Step 2: pfnqnPN is increasing

• If x P An,k. We start by remarking that
„

k ´ 1

2n
,
k

2n

„

“

„

2k ´ 2

2n`1
,
2k ´ 1

2n`1

„

\

„

2k ´ 1

2n`1
,
2k

2n`1

„

so An,k “ An`1,2k´1 Y An`1,2k and either

fn`1pxq “
2k ´ 2

2n`1
“

k ´ 1

2n
“ fnpxq

or

fn`1pxq “
2k ´ 1

2n`1
ą

k ´ 1

2n
“ fnpxq
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• If x P Bn then either x P Bn`1 Ď Bn and

fn`1pxq “ n ` 1 ą n “ fnpxq

or

fpxq P rn, n ` 1r“

pn`1q2n`1
ď

k“n2n`1`1

„

k ´ 1

2n`1
,

k

2n`1

„

so Dk P Jn2n`1 ` 1, pn ` 1q2n`1K such that x P An`1,k and

fn`1pxq “
k ´ 1

22n`1 ě n “ fnpxq

Step 3: fn Ñ f pointwise

By construction fn ď f . Let x P E.

• If fpxq “ `8, then @n P N˚,

fnpxq “ n Ñ
nÑ8

`8 “ fpxq

• Otherwise @n ą fpxq, Dk P J1, n2nK | fpxq P
q
k´1
2n

, k
2n

y
so fnpxq “ k´1

2n
and

|fpxq ´ fnpxq| ď
1

2n
Ñ

nÑ8
0

Step 4: If f real valued

Let f` – maxpf, 0q ě 0 and f´ “ ´minpf, 0q ě 0 so that f “ f` ´ f´. From the previous
steps, there exists sequences of simple functions pfn,`qnPN, pfn,´qnPN such that

fn,` Ñ
nÑ8

f` fn,´ Ñ
nÑ8

f´

so

fn,` ´ fn,´ Ñ
nÑ8

f

and fn,` ´ fn,´ is simple due to Proposition IV.7.

Proposition IV.9

Let f, g : pE,Aq Ñ R measurable and λ P R then f ` g, fg, λf are measurable.
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Proof:

From Theorem IV.8, there exists sequences of simple functions pfnqnPN, pgnqnPN such that

fn Ñ
nÑ8

f gn Ñ
nÑ8

g

and thus

fn ` gn Ñ
nÑ8

f ` g

fngn Ñ
nÑ8

fg

λfn Ñ
nÑ8

λf

while fn `gn, fngn, λfn are measurable due to Proposition IV.7. We conclude with Theorem
IV.5.
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V Lebesgue’s integral

Let pE,A, µq be a measured space.

Definition V.1: Lebesgue integral

• Given M P A, we define
ż

E

1Mdµ – µpMq

• Given a non-negative simple function

s –

n
ÿ

k“0

λk1Mk

we define
ż

E

sdµ –

n
ÿ

k“0

λk

ż

E

1Mk
dµ

• Given f : pE,A, µq Ñ R` a non-negative measurable function we define
ż

E

fdµ – sup
s simple
0ďsďf

ż

E

sdµ

• We say that a measurable function f : pE,A, µq Ñ R is integrable if
ż

E

|f | ă `8

and in this case define
ż

E

fdµ –

ż

E

f`dµ ´

ż

E

f´dµ

• Given M P A, if f1M is non-negative or integrable, we define
ż

M

fdµ –

ż

E

f1Mdµ

A few comments:

• Integral have to computed with the convention that 0 ¨ 8 “ 0
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• The integral for a simple function is
ż

E

sdµ “

n
ÿ

k“0

λkµpMkq

• Taking µ “ l leads to connections with the Riemann integral.

• Other notation:
ż

E

fdµ —

ż

E

fpxqdµpxq

• We can extend the definition of the integral to non-integrable measurable functions
f : E Ñ R such that

ż

E

f`dµ “ `8 xor
ż

E

f´dµ “ `8

through
ż

E

fdµ –

ż

E

f`dµ ´

ż

E

f´dµ

Proof:

We need to check that the definition of the Lebesgue integral of a simple function is
independent of the choice of measurable sets. Assume that

s “

n
ÿ

k“1

λk1Mk
“

m
ÿ

q“1

µq1Nq

Denote

M0 – Ez

n
ď

k“1

Mk, N0 – Ez

m
ď

q“1

Nq, λ0 – µ0 – 0

we still have that

s “

n
ÿ

k“0

λk1Mk
“

m
ÿ

q“0

µq1Nq

and then @k P J0, nK , @q P J0,mK , Mk X Nq ‰ H ùñ λk “ µq so

n
ÿ

k“0

λkµpMkq “

n
ÿ

k“0

λkµ

˜

Mk X

m
ď

q“0

Nq

¸

“

n
ÿ

k“0

m
ÿ

q“0

λkµpMk X Nqq “

n
ÿ

k“0

m
ÿ

q“0

µqµpMk X Nqq

“

m
ÿ

q“0

µqµ

˜

Nq X

n
ď

k“0

Mk

¸

“

m
ÿ

q“0

µqµpNqq

38



hence
n
ÿ

k“1

λkµpMkq “

m
ÿ

q“1

µqµpNqq

then
Example V.2: The Dirac mass

If a P E and µ – δa then
ż

E

fdδa “ fpaq

• Indicator functions: let M P A, then
ż

E

1Mdδa “ δapMq “ 1Mpaq

• Simple functions: let

s –

n
ÿ

k“0

λk1Mk

be a non-negative simple function. Then
ż

E

sdδa “

n
ÿ

k“0

λkδapMkq “

n
ÿ

k“0

λk1Mk
paq “ spaq

• Non negative measurable functions: let f : E Ñ R` measurable, then
ż

E

fdδa “ sup
s simple
0ďsďf

spaq ď fpaq

But then we have equality in the above by choosing s – fpaq1a.

• Real valued measurable functions: let f : E Ñ R` measurable, since
ż

E

|f | dδa “ |fpaq|

we see that f is integrable if and only if |fpaq| ă `8 and in this case
ż

E

fdδa “

ż

E

f`dδa ´

ż

E

f´dδa “ f`paq ´ f´paq “ fpaq

39



Proposition V.3

Let f, g : pE,A, µq Ñ R measurable, the following hold as soon as the integrals are defined:

1. Markov’s inequality: @a ą 0,

µ
`

f´1
pra,`8sq

˘

ď
1

a

ż

E

|f | dµ

2. If µpEq “ 0 or f “ 0, then
ż

E

fdµ “ 0

3. The integral is non-decreasing: let M,N P A,

‚ f ď g ùñ

ż

E

fdµ ď

ż

E

gdµ

‚ M Ď N, f ě 0 ùñ

ż

M

fdµ ď

ż

N

fdµ

Proof:

1. |f | is measurable as composition of f and |¨| and a1f´1pra,`8sq is a non-negative simple
function such that

a1f´1pra,`8sq ď |f |

therefore

aµpf´1
pra,`8sqq ď

ż

E

|f | dµ

2. If µpEq “ 0, then @M P A, µpMq “ 0 so
ż

E

1Mdµ “ µpMq “ 0

thus the same follows for simple functions and f , f being integrable as
ż

E

|f | dµ “ 0

Next, we remark that the 0 function can be written as 0 “ 1H so
ż

E

0dµ “

ż

E

1Hdµ “ µpHq “ 0
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3. Assume that 0 ď f ď g and let s be a non-negative simple function.

Since s ď f ùñ s ď g,

ts simple |0 ď s ď fu Ď ts simple |0 ď s ď gu

so
ż

E

fdµ ď

ż

E

gdµ

Now, assume that f, g : E Ñ R are integrable such that f ď g, then f` ď g` and
f´ ě g´ so

ż

E

dµ “

ż

E

f`dµ ´

ż

E

f´dµ ď

ż

E

g`dµ ´

ż

E

g´dµ “

ż

E

gdµ

As a consequence if M Ď N and f ě 0, then f1M ď f1N and
ż

M

fdµ “

ż

E

f1Mdµ ď

ż

E

f1Ndµ “

ż

N

fdµ

Theorem V.4: Monotone convergence

Let fn : pE,A, µq Ñ R` be a non decreasing sequence of measurable functions, then

lim
nÑ8

ż

E

fndµ “

ż

E

lim
nÑ8

fndµ

Proof:

Step 1: A first lemma

Let N P A, we remark that

µN :
A Ñ R
M ÞÑ µpN X Mq

is a measure as

• µNpHq “ µpHq “ 0

• If pMnqnPN Ď A disjoints, then pN X MnqnPN are also disjoints so

µN

˜

ď

nPN

Mn

¸

“ µ

˜

N X
ď

nPN

Mn

¸

“ µ

˜

ď

nPN

pN X Mnq

¸

“
ÿ

nPN

µpN X Mnq

“
ÿ

nPN

µNpMnq
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Let

s –

n
ÿ

k“0

λk1Mk

be a simple function, then

µs :
A Ñ R
M ÞÑ

ş

M

sdµ

is a also a measure, as sum of measures, since
ż

M

sdµ “

ż

E

s1Mdµ “

ż

E

˜

n
ÿ

k“0

λk1Mk
1M

¸

dµ “

ż

E

˜

n
ÿ

k“0

λk1MXMk

¸

dµ “

n
ÿ

k“0

λkµpM X Mkq

“

n
ÿ

k“0

λkµMpMkq

Step 2: A second lemma

Let t P R, then with the notations from the previous lemma,

ts “

n
ÿ

k“0

tλk1Mk

is a simple function so
ż

E

tsdµ “

n
ÿ

k“0

tλkµpMkq “ t
n
ÿ

k“0

λkµpMkq “ t

ż

E

sdµ

Step 3: Proof

let f be the pointwise limit of pfnqnPN.

ď As @n P N, fn ď f , by monotonicity of the integral,
ż

E

fndµ ď

ż

E

fdµ

Taking the limit n Ñ 8, we obtain

lim
nÑ8

ż

E

fndµ ď

ż

E

fdµ

ě Let s be a simple function such that 0 ď s ď f . Our goal is to prove that
ż

E

sdµ ď lim
nÑ8

ż

E

fndµ
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so that we obtain the result by taking the supremum over s.

Let t P r0, 1r and denote @n P N,

Mn,t – tx P E|tspxq ď fnpxqu P A

which is a non-decreasing sequence in n. Let x P E.

‚ If fpxq “ 0, then @n P N, @t P r0, 1r, x P Mn,t

‚ Otherwise, tspxq ď tfpxq ă fpxq and up to a rank in n, tspxq ď fnpxq

Thus
ď

nPN

Mn,t “ E

and
ż

Mn,t

sdµ “ µspMn,tq Ñ
nÑ8

µs

˜

ď

nPN

Mn,t

¸

“ µspEq “

ż

E

sdµ

By definition of Mn,t, @n P N,

t

ż

Mn,t

sdµ “

ż

Mn,t

stdµ ď

ż

Mn,t

fndµ ď

ż

E

fndµ

Taking the limit n Ñ 8, we get

t

ż

E

sdµ ď lim
nÑ8

ż

E

fndµ (V.1)

and we conclude by taking the limit t Ñ 1.

Proposition V.5

Let f, g : pE,A, µq Ñ R be measurable functions, then, as long as the integrals make sense,
we have the followings properties:

1. Linearity: @a, b P R
ż

E

paf ` bgqdµ “ a

ż

E

fdµ ` b

ż

E

gdµ

2. Chasles relation: @M,N P A disjoints,
ż

MYN

fdµ “

ż

M

fdµ `

ż

N

fdµ
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A useful consequence is that if f “ g µ-a.e., meaning that DN P A such that µpNq “ 0 and
f|Nc “ g|Nc , we have that

ż

E

fdµ “

ż

Nc

fdµ `

ż

N

fdµ

loomoon

“0

“

ż

Nc

gdµ `

ż

N

gdµ

loomoon

“0

“

ż

E

gdµ

The implication of this is that all the properties of the Lebesgue integral are true if the functions
are only defined µ-a.e. For example, if f ď g µ-a.e., then

ż

E

fdµ ď

ż

E

gdµ

Proof:

1. Multiplication by a scalar property: let λ P R.

‚ If λ ą 0, then for f ě 0, using (V.1) with the change of variable rs – s
λ
,

ż

E

λfdµ “ sup
s simple
0ďsďλf

ż

sdµ “ sup
rs simple
0ďrsďf

ż

λrsdµ “ λ sup
rs simple
0ďrsďf

ż

rsdµ “ λ

ż

E

fdµ

For f real valued, as pλfq` “ λf`, pλfq´ “ λf´,
ż

E

λfdµ “

ż

E

λf`dµ ´

ż

E

λf´dµ “ λ

ż

E

f`dµ ´ λ

ż

E

f´dµ “ λ

ż

E

fdµ

‚ If λ “ 0, then
ż

E

λfdµ “ 0 “ λ

ż

E

fdµ

‚ If λ ă 0, for f ě 0, pλfq` “ 0, pλfq´ “ ´λf so
ż

E

λfdµ “

ż

E

pλfq`dµ ´

ż

E

pλfq´dµ “ ´

ż

E

p´λq
loomoon

ě0

fdµ “ ´ p´λq

ż

E

fdµ “ λ

ż

E

fdµ

For f real valued, pλfq` “ ´λf´, pλfq´ “ ´λf` so
ż

E

λfdµ “

ż

E

p´λqf´dµ ´

ż

E

p´λqf`dµ “ ´λ

ż

E

f´dµ ` λ

ż

E

f`dµ “ λ

ż

E

fdµ

Sum property:

• For simple functions, starting with the notation from (IV.1), by σ-additivity,
ż

E

ps ` hqdµ “

n
ÿ

k“0

m
ÿ

q“0

pλk ` µqqµ pMk X Nqq `

n
ÿ

k“0

λkµ

˜

Mkz

m
ď

q“0

Nq

¸
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`

m
ÿ

q“0

µqµ

˜

Nqz

n
ď

k“0

Mk

¸

“

n
ÿ

k“0

λkµ

˜

Mk X

m
ď

q“0

Nq

¸

`

n
ÿ

k“0

λkµ

˜

Mkz

m
ď

q“0

Nq

¸

`

m
ÿ

q“0

µqµ

˜

Nq X

n
ď

k“0

Mk

¸

`

m
ÿ

q“0

µqµ

˜

Nqz

n
ď

k“0

Mk

¸

“

n
ÿ

k“0

λkµpMkq `

m
ÿ

q“0

µqµpNqq “

ż

E

sdµ `

ż

E

hdµ

• For f, g ě 0, there exists non negative, non decreasing sequences of simple functions
pfnqnPN, pgnqnPN such that fn Ñ

nÑ8
f, gn Ñ

nÑ8
g. Then, by monotone convergence,

ż

E

pf ` gqdµ “ lim
nÑ8

ż

E

pfn ` gnqdµ “ lim
nÑ8

ż

E

fndµ ` lim
nÑ8

ż

E

gndµ “

ż

E

fdµ `

ż

E

gdµ

• For f, g real valued,
#

f ` g “ pf ` gq` ´ pf ` gq´

f ` g “ f` ´ f´ ` g` ´ g´

ùñ pf ` gq` ` f´ ` g´ “ pf ` gq´ ` f` ` g`

ùñ

ż

E

pf ` gq`dµ `

ż

E

f´dµ `

ż

E

g´dµ “

ż

E

pf ` gq´dµ `

ż

E

f`dµ `

ż

E

g`dµ

ùñ

ż

E

pf ` gq`dµ ´

ż

E

pf ` gq´dµ “

ż

E

f`dµ ´

ż

E

f´dµ `

ż

E

g`dµ ´

ż

E

g´dµ

ùñ

ż

E

pf ` gqdµ “

ż

E

fdµ `

ż

E

gdµ

2. As a consequence of linearity,
ż

MYN

fdµ “

ż

E

fp1MYNqdµ “

ż

E

fp1M ` 1Nqdµ “

ż

E

f1Mdµ `

ż

E

f1Ndµ

“

ż

M

fdµ `

ż

N

fdµ
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Lemma V.6: Fatou

Let fn : pE,A, µq Ñ R` be a measurable function, then
ż

E

lim inf
nÑ8

fndµ ď lim inf
nÑ8

ż

E

fndµ

Proof:

@n P N, inf
kěn

fk ď fn so

ż

E

inf
kěn

fkdµ ď

ż

E

fndµ

thus

lim inf
nÑ8

ż

E

inf
kěn

fkdµ ď lim inf
nÑ8

ż

E

fndµ

But, the left term is non-decreasing, so by monotone convergence

lim inf
nÑ8

ż

E

inf
kěn

fkdµ “ lim
nÑ8

ż

E

inf
kěn

fkdµ “

ż

E

lim
nÑ8

inf
kěn

fkdµ “

ż

E

lim inf
nÑ8

fndµ

which concludes.

Theorem V.7: Dominated convergence

Let fn : pE,A, µq Ñ R be a sequence of measurable functions. If

• fn
µ-a.e.
Ñ

nÑ8
f : E Ñ R

• Dg : E Ñ R µ-integrable such that @n P R, |fn| ď g µ-a.e.

then f is integrable and

lim
nÑ8

ż

E

fndµ “

ż

E

fdµ

Proof:

Denote @n P N, hn – 2g ´ |f ´ fn|, then since

|f ´ fn| ď |f | ` |fn| ď 2g
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so hn ě 0 µ-a.e. With Fatou’s lemma,

ż

E

lim inf
nÑ8

hndµ “ 2

ż

E

gdµ ď lim inf
nÑ8

ż

E

hndµ “ 2

ż

E

gdµ ` lim inf
nÑ8

¨

˝´

ż

E

|f ´ fn| dµ

˛

‚

“ 2

ż

E

gdµ ´ lim sup
nÑ8

ż

E

|f ´ fn| dµ

looooooooooomooooooooooon

ď0

so

0 ď lim
nÑ8

ż

E

|f ´ fn| dµ ď lim sup
nÑ8

ż

E

|f ´ fn| dµ ď 0

We conclude with the monotonicity of the integral:
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

E

fndµ ´

ż

E

fdµ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

E

pfn ´ fqdµ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż

E

|fn ´ f | dµ Ñ
nÑ8

0
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VI Applications and connections

Proposition VI.1: Link with Riemann integral

Let f P C0pra, bs,Rq, then

b
ż

a

fpxqdx “

ż

ra,bs

fpxqdlpxq

Note that the left hand site of the equality is understood as the Riemann integral and the
right and side as the Lebesgue integral with respect to the Lebesgue measure.

Proof:

First assume that f ě 0 and for simplicity that ra, bs “ r0, 1s. For n P N˚ and k P J1, 2nK,
denote

In,k –

„

k ´ 1

2n
,
k

2n

„

From Riemann integration theory, we know that
1
ż

0

fpxqdx “ lim
nÑ8

1

2n

2n
ÿ

k“1

min
In,k

f “ lim
nÑ8

2n
ÿ

k“1

ˆ

min
In,k

f

˙

lpIn,kq “ lim
nÑ8

ż

r0,1s

sndl

with

sn –

2n
ÿ

k“1

ˆ

min
In,k

f

˙

1In,k

Noticing that

In,k “ In`1,2k´1 Y In`1,2k

we see that psnqnPN˚ is non-decreasing. Let x P r0, 1r and ϵ ą 0, then

@n P N˚, Dkn P J1, 2nK | x P In,kn

As f is continuous,

Dδ ą 0 | @y P r0, 1r, |y ´ x| ď δ ùñ |fpyq ´ fpxq| ď ϵ

So for n 1
2n

ď δ when n ě ln2

`

1
δ

˘

we have that

0 ď fpxq ´ snpxq “ max
yPIn,k

pfpxq ´ fpyqq ď ϵ

Hence the conclusion follows by monotone convergence.
For real valued functions, the result is generalized by splitting the integral into positive and
negative parts and using the linearity of the Lebesgue and the Riemann integrals.
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This result can be generalized for a more general class of functions. Indeed it is still true if
f : ra, bs Ñ R if Riemann integrable and bounded. Then one can prove that

• l ptx P ra, bs | f is not continuous at xuq “ 0

• D rf : ra, bs Ñ R measurable such that rf “ f l-a.e

• rf is Lebesgue integrable and

b
ż

a

fpxqdx “

ż

ra,bs

rfpxqdlpxq

Results also holds for generalized Riemann integrals.

The next results are applications of the dominated convergence theorem.

In the following we consider a function

f :
pX, dq ˆ pE,A, µq Ñ R

px, yq ÞÑ fpx, yq

where pX, dq is a metric space and pE,A, µq is a measured space. Then denote

F :
pX, dq Ñ R
x ÞÑ

ş

E

fpx, yqdµpyq

F is called a parameter-dependent integral, here the parameter is the variable x.

We introduce a notation for the sections of f : @x P X,

fpx, ‚q :
pE,A, µq Ñ R

y ÞÑ fpx, yq

and @y P E,

fp‚, yq :
pX, dq Ñ R
px, yq ÞÑ fpx, yq

so that Fpxq “
ş

E

fpx, ‚qdµ.

Theorem VI.2: Continuity of parameter-dependent integrals

If

• f is continuous with respect to x µ-a.e. on E:

for µ-a.e. y P E, fp‚, yq P C0
pX,Rq

• f is measurable with respect to y on X:

@x P X, fpx, ‚q is measurable
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• D g : E ÞÑ R` µ-integrable such that

@x P X, for µ-a.e. y P E, |fpx, yq| ď gpyq

then F P C0pX,Rq.

Proof:

Let x P X, Fpxq is well defined and real valued as fpx, ‚q is µ-integrable due to the last
assumption.
Let pxnqnPN Ď X such that xn Ñ

nÑ8
x. Denote

@y P E, fnpyq – fpxn, yq

then for µ-a.e. y P E, fnpyq Ñ
nÑ8

fpx, yq as f is continuous with respect to x. Finally,

@n P N, |fn| ď g

so by the dominated convergence theorem

lim
nÑ8

Fpxnq “ lim
nÑ8

ż

E

fnpyqdµpyq “

ż

E

fpx, yqdµpyq “ Fpxq

Example VI.3: Continuity of the Euler gamma function

We define @ x ą 0,

Γpxq –

ż

R`

yx´1e´ydy

this is a well-defined and positive function known for being a continuous extension of the
factorial as is satisfies

@x ą 0, Γpx ` 1q “ xΓpxq

hence @n P N˚, Γpnq “ pn ´ 1q!. We can use the previous theorem the verify that this is
indeed a continuous function.
We prove a that Γ is continuous on every interval ra, bs Ď R˚

` so it is continuous on R˚
`. In

this case we have

f :
R˚

` ˆ R` Ñ R
px, yq ÞÑ yx´1e´y

To apply to previous result we verify that

• f is continuous with respect to x on R˚
` so f is continuous with respect to x l-a.e. on

R` (f have a discontinuity at y “ 0 if and only if x ă 1, but lpt0uq “ 0).

50



• f is measurable with respect to y on ra, bs as it is continuous.

• @x P ra, bs, @y P R`,

|fpx, yq| “ yx´1e´y
ď ya´11yă1 ` yb´1e´y1yě1 — gpyq

where g is integrable on R`.

Theorem VI.4: Differentiability of parameter-dependent integrals

Assume that X “ sa, br and

• f is measurable with respect to y on sa, br

• Dx0 P sa, br | fp‚, y0q is µ-integrable

• f is differentiable with respect to x µ-a.e. on E

• D g : E ÞÑ R` µ-integrable such that

@x P sa, br, for µ-a.e. y P E,

ˇ

ˇ

ˇ

ˇ

Bf

Bx
px, yq

ˇ

ˇ

ˇ

ˇ

ď gpyq

then f is integrable with respect to y on sa, br, and F is differentiable with

@x P sa, br ,F 1
pxq “

ż

E

Bf

Bx
px, yqdµpyq

Proof:

By the mean value theorem, @x P sa, br, for µ-a.e. y P E,

|fpx, yq ´ fpx0, yq| ď |x ´ x0| gpyq ď pb ´ aqgpyq

thus by the triangular inequality,

|fpx, yq| ď pb ´ aqgpyq ` fpx0, yq (VI.1)

and as the right hand side is µ-integrable in y, fpx, ‚q is µ-integrable.
Let x, Psa, br and pxnqnPN Ď sa, br z txu, such that xn Ñ

nÑ8
x, then by linearity of the integral,

Fpxq ´ Fpxnq

x ´ xn

“

ż

E

fpx, yq ´ fpxn, yq

x ´ xn
loooooooooomoooooooooon

–hnpyq (measurable)

dµpyq

As f is differentiable with respect to x, for µ-a.e. y P E,

hnpyq Ñ
nÑ8

Bf

Bx
px, yq
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Using again the mean value theorem, we get that |hn| ď g µ-a.e., so by the dominated
convergence theorem, @x P sa, br,

F 1
pxq “ lim

nÑ8

Fpxq ´ Fpxnq

x ´ xn

“

ż

E

lim
nÑ8

fpx, yq ´ fpxn, yq

x ´ xn

dµpyq “

ż

E

Bf

Bx
px, yqdµpyq

Example VI.5: Differentiability of the Euler gamma function

With the same notations as in the previous Example VI.3, since

Bf

Bx
px, yq “ lnpyqfpx, yq

and
ˇ

ˇ

ˇ

ˇ

Bf

Bx
px, yq

ˇ

ˇ

ˇ

ˇ

“ |lnpyq| gpyq

with |ln| g integrable on R` we have that @x P R˚
`

Γ1
pxq “

ż

R`

lnpyqyx´1e´1dy

Theorem VI.6: Change of variable for the push-forward measure

Let f : pE,A, µq Ñ pF, βq measurable, we define the push-forward measure of µ by f ,
@M P A by

f˚µpMq – µ
`

f´1
pMq

˘

If g : pFβq Ñ R is measurable then,
ż

F

gdpf˚µq “

ż

E

g ˝ fdµ

Informally this is a change of variable if one defines y – f´1pxq, x “ fpyq as

”

ż

F

gpxqdµ
`

f´1
pxq

˘

“

ż

E

gpfpyqqdµpyq”

Proof:

First, we verify that f˚µ is a measure as

f´1
pHq “ H
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and for pMnqnPN Ď β disjoints,

f´1

˜

ğ

nPN

Mn

¸

“
ğ

nPN

f´1
pMnq

Let M P β, noticing that 1f´1pMq “ 1M ˝ f , we obtain the desired formula for an indicator
function:

ż

F

1Mdf˚µ “ f˚µpMq “ µ
`

f´1
pMq

˘

“

ż

E

1f´1pMqdµ “

ż

E

1M ˝ fdµ

the result is then generalized to measurable functions by linearity and monotone convergence.

Remark VI.7: Link with probability theory

A measured space pΩ,F ,Pq is called a probability space if PpΩq “ 1. In this case we say that

• Ω is the sample space (the space of all outcomes)

• F is the set of all events

• P is a probability

Let A P F , PpAq is the probability of the event A Ď Ω.
A random real variable on pΩ,F ,Pq is a measurable function X : Ω Ñ R. The law of X is
then PX – X˚P. It is a probability on pR,BpRqq as

PX pRq “ P
`

X´1
pRq

˘

“ P pΩq “ 1

Given an event E P BpRq, in probability, we usually denote pX P Eq – X´1pEq so that

PpX P Eq “ PXpEq “ PpX´1
pEqq

Let g be a real measurable function, then the push-forward formula provides an expression
for the computation of the expectation

Erg ˝ Xs –

ż

Ω

g ˝ XdP “

ż

R

gpxqdPXpxq

which is convenient to compute expectations as a real integral.
We say that the law PX has a density fX : R Ñ R` if

@E P BpRq,PXpEq “

ż

E

fXpxqdx

and in this case expectations can be computed with real integral with respect to the Lebesgue
measure since

Erg ˝ Xs “

ż

R

gpxqfpxqdx
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Indeed, this follows from the fact that @E P BpRq,
ż

R

1EpxqdPXpxq “ dPXpEq “

ż

E

fXpxqdx “

ż

R

1Epxqfpxqdx
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VII Annexes

VII.1 Completion of measures
1. Prove that Aµ

Ď σpA Y Nµq.

2. Prove that A Y Nµ Ď Aµ.

3. Prove that Aµ is a σ-Algebra over E.

4. Conclude that σpA Y Nµq “ Aµ.

Let M P σpA Y Nµq, we choose DN1, N2 P A|N1 Ď M Ď N2 and µpN2zN1q “ 0 according to
the definition of Aµ.

5. Verify that µpN1q “ µpN2q.

We define

µpMq – µpN1q “ µpN2q.

6. Verify that µ is well defined, i.e. that its definition is independent of the choice of
measurable sets N1, N2.

7. Prove that µ is a measure on
`

E,Aµ˘.

8. Prove that µ is the only measure extending µ on
`

E,Aµ˘.

9. Verify that the measured space
`

E,Aµ
, µ
˘

is complete, i.e. contains all the µ-negligible
sets.

10. Prove that
`

E,Aµ
, µ
˘

is the smallest complete extension of pE,A, µq. Precisely, you need
to verify that if pE,B, ηq is a complete measured space such that A Ď B and η|A “ µ then
Aµ

Ď B.

VII.2 From outer measures to measures
Let A,B P A˚

µ and N Ď PpEq.

1. Prove that

µ˚
pNq “ µ˚

pN X A X Bq ` µ˚
pN X A X Bc

q ` µ˚
pN X Ac

X Bq ` µ˚
pN X Ac

X Bc
q

2. Apply this to N X pA Y Bq instead of N .

3. Deduce that A˚
µ is closed under union.
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4. Prove that if A X B “ H then

µ˚
pN X pA Y Bqq “ µ˚

pN X Aq ` µ˚
pN X Bq

5. Generalize the previous result by induction.

6. Prove that A˚
µ is non-empty and closed under complement.

Let pMnqnPN Ď A˚
µ

7. Construct a two by two disjoint sequence pAnqnPN Ď A˚
µ such that

@n P N,
n
ď

i“0

Ai “

n
ď

i“0

Mi

8. Prove that @n P N

µ˚
pNq ě

n
ÿ

i“0

µ˚
pN X Aiq ` µ˚

˜

N X

˜

ď

iPN

Mi

¸c¸

9. Prove that

µ˚
pNq ě µ˚

˜

N X
ď

nPN

Mn

¸

` µ˚

˜

N X

˜

ď

nPN

Mn

¸c¸

(VII.1)

10. Conclude that A˚
µ is a σ-algebra

Now, assume that pMnqnPN Ď A˚
µ is two by two disjoint.

11. Prove that µ˚

|A˚
µ

is σ-additive by choosing

N –
ď

nPN

Mn

inside (VII.1).

12. Conclude that µ˚

|A˚
µ

is a measure.

13. Prove that A˚
µ is complete.
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