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Introduction

Related readings

For further references related to the course material we refer to [3| for its vast collection of
problems and solutions. [1] is also a classic, we will cover chapters I, II, VI and VIII. We also

must mention that these lecture notes are inspired from the great ones of J-C. Breton [2] (in
French).

Let’s measure

As its name subtly suggests, measure theory is a framework for measuring the ’size’ of objects.
"What kind of object?’ the audience should ask. To that, the answer is quite rude and abstract:
sets. This is the reason why you will need some familiarity with set theory and quantifiers to
understand the following piece of mathematics.

But be not afraid (yet), we will start by measuring length of segments, areas of rectangles and
volumes. For these familiar objects, intuition about ’size’ will guide us through the construction
of the abstract theory of measures. Once established, this theory extends to the study of more
complex structures, such as fractals.

Measure theory is in particular renowned for its application to integration. The central
object of this course will likely be the Lebesgue integral, which, under a regularity assumption,
generalizes the Riemann integral. The case for the Lebesgue integral rests on the following idea:
if we have a notion of ’size’ on an arbitrary set F (that is, a theory for measuring objects) then
we can define the integral of some functions whose domain is E. The key advantage is that,
unlike the Riemann integral, £ can differ significantly from R.

Let us develop on the link between a theory of integration (understand here: a way of
defining integrals) and a notion of ’size’ while briefly recalling Riemann’s theory of integration.

Riemann integral in a nutshell

Let f be a real function on an interval [a, b]

that we assume continuous for simplicity. TS %
Let (24)ke[o,n) be a partition of [a,b] and \ A
consider the piecewise constant fonction ~~———"

fo(@) = flar) if 21 < T < Tpya

From our great knowledge of the formula for
the area of rectangles we are able to define
the integral of f,, as

n—1

L= [ fule)ds = 3, flon)(onn - )



Then, imposing the partitions are of increasing precision:

€, = max (Tgr1 —x) — 0
ke[0,n—1] n—0

we benefit from the regularity of f and obtain a limit I for (1,,),en while f,, converges to f, at
least pointwisely. All that is left to do is to call I the integral of f:

Jb fla)de = I

Any serious development of Riemann integral now needs to check that the value obtained for
the integral of f is independent of the choice we made for the partitions, but this method is not
the object of study here.

Length and integrals

As long as we are measuring objects on the real line, the meaning of ’size’ is length. Lengths
and integrals are connected, as it is possible to construct one from the other.

It is important to note that in the above construction we went from length to integrals.
Indeed, the length appeared when we integrated piecewise functions:

n—1
iy = Z f(z)Length([xg, z + 1])
k=0

if we denote, for any real interval [«, 5],

Length([a, 5]) == § — a

By reversing this relation, we can extend the definition of length to sets M < R for which their

indicator function
lifeeM
]l M(ZL’) = {

0 else

is Riemann integrable through

Length(M) — f 1y (2)da (1)

since

B
Jﬂ[a’g]($>d$ = Jldx =f—«

R

Using this definition, it is possible to make less intuitive measurements, such as the length of
the Cantor set.



The Cantor set

Start from the unit interval
Co = [O, 1]

and then iteratively remove a third of
it in the middle of all its parts:

C.U (2+C,)

Vne N,Cn_;,_]_ = 3

(:2)

The limit object

czzﬂcn

neN

is called the Cantor set. Figure 1: The 4 first steps in the construction of the

Cantor set

The obvious question is then: what is the Length of C? Easy enough: we started with a length
of one and removed a third of it at each construction step, thus

Length(C,) — (g)n

To prove this, we could evaluate the Length function in (.2) or notice that C,, is made up of 2"
intervals of length 37". Taking the piecewise function 1¢, as Riemann approximation for ¢, it
follows that

2 n
Length(C) = J]lc(a:)da: = lim | I¢,(«)dz = lim Length(C,) = lim (—) =0

n—0o0 n—oo n—w \ 3
R

Hence, while remaining very much non-empty, the Cantor set has 0 length.

The need for generalization

Proud of our success in measuring the Cantor set, we ask a more challenging question: what is
the length of rational numbers, say for sake of boundedness, inside [0, 1]? Now, the non-Riemann
integrability of 1[0, deprives us from an answer. Hoping that the reader is motivated by
this existential problem, we will prove that the Lebesgue measure is a more precise measuring
tool than the Length we just defined using Riemann integral. This will allow us to settle the
question. In other words, the Lebesgue Integral will give a meaning to the following integral

1

f 1)

0



Distributions

Imagine we have a point particle of mass 1 at the origin of space and nothing else. Then the
density ¢ is 0 everywhere except at origin and must integrate to 1:

! J5(x)d:r: =1
R3

This prevents the value of 4 at the origin to be finite otherwise the above integral would be
0. Thus, 0 cannot be defined as a real function, it is called a distribution. Let us think of the
word distribution as in distribution probability (this is the case here since the integral is 1).
Moreover, § represents the physical distribution of mass in space.

Nevertheless, if we believe ¢ is a real function (which it is not) then VM < R?,
"M (x)d(z) = 13 (0rs)o(z)

since Yz # 0,0(x) = 0, therefore by linearity

/J]IM(x)é(x)dx = J]IM(OR3)5(x)dx = 13/(0gs) J(5(x)dx = 1 3/(0gs)’ (.3)

R3 R3 R3

Rigorously, 0 can be defined as a measure called the Dirac mass. In this example, it is a measure
on R?, meaning that the Dirac mass attributes a ’size’ to objects in space, or in mathematical
terms, to subsets of R®. Let M < R?, the precise definition is

5(M) = 1,;(0gs)

Understand: ’the size of M is one if M contains the origin and 0 otherwise’. ¢ associate to M
the total mass that is found inside the region of space M. As promised, from this notion of
'size’ follows a theory of integration. We rewrite (.3) as our new definition of the integral:

J 101 (2)d6(z) = S(M) (4)

RS

In the right-hand integral we inserted the ¢ inside the usual ‘dx’ to remember that this integration
is performed with respect to the Dirac measure as a tool for measuring sizes.

Measures

Following the notation from the previous paragraph, we should replace the 'dz’ in (.1) by
dLength(z) since the Riemann integral is constructed using the Length as measuring tool:

f]lM(x)dLength(a:) — Length(M)

This is analogous to (.4), but with Length instead of . In general, if we have a set £ and a way
of measuring subsets of F, say, a function u : P(E) — R, we will define an associated integral by

VM c B, J L (2)dpu() = p(M)



Once it is possible to integrate indicator functions we extend the integral to piecewise functions
by linearity (a piecewise function is a linear combination of indicator functions) and then to
a more general class of functions by taking limits, exactly as is done in Riemann integration.
Making these steps rigorous will be the focus of a significant part of this course.

Brief plan

The first part of these lecture notes will be devoted to methods for constructing interesting
measures, with a focus on the Lebesgue measure generalizing the concept of length. From
measures will follow the Lebesgue integral. We will study its basic properties and applications,
ultimately leading us to an introduction to Fourier analysis.



I Sigma-Algebras

Let E be a set.
— Definition 1.1: o-algebra

A< P(E) is a g-algebra on E if it is
e non-empty: A #
e closed under complement: VM € A, M“e A
e closed under countable unions: V(M,).en € A, U M, € A.

neN

(E, A) is then called a measurable space and elements of A are called measurable sets.

Example 1.2

o {J, E},P(E) are respectively the smallest and the largest (for the inclusion) o-algebras
on E.

o {#,{0,1},{0},{1,2}} is o-algebra on {0, 1, 2}.

Beware that a g-algebra on E is not a subset of F, but a collection of subsets of F as it is a
subset of the powerset of . When talking about a o-Algebra A on E, the following assertions
are true AC P(E),Ee A, Me A — M < E but A€ E is a mathematical statement that
should not, under any circumstances, find its way into a student’s exam.

Here are some immediate results

e The non-emptiness axiom can be replaced by & € A or E € A. Indeed, if one of the
previous is true then A is non-empty. Conversely, say that M € A, then by closeness
under complement M€ € A, and by closeness under finite (a finite set is countable) union,
E =M u M°e A. Thus by closeness under complement again, ¢ = E° € A.

e With Morgan’s law, a o-algebra is also closed under countable intersections.

e Stability under difference: M, Ne A — M\N = M u N¢ e A.

— Definition 1.3: Generated o-algebra
Let M < P(E),
o(M) = N A
A o—algebra on E

McA

is the smallest o-algebra containing M. o(M) is called the o-algebra generated by M.




Proof:

An intersection of o-algebras is a o-algebra (use ¢J € A as the non-emptiness axiom to prove
this as an Exercice), so 0(M) is a g-algebra and by construction, M < o(M). Then, if A is
a o-algebra on E containing M, we have o(M) < A.

We will be using this one last argument very often. For the purpose of rephrasing: o(M) is
the unique o-algebra on E smaller than every other o-algebra on E containing M.

Example 1.4
IOH {0,1},0({0}) = o({1}) = {, {0}, {1}, {0, 1}}.
— Definition 1.5: Induced o-algebra

Let F' < E and A be a g-algebra on E. Then Ap = {M n F, M € A} is a o-algebra on F

called the induced o-algebra.
©»

— Proof:

Step 1: Non-emptiness
AFr is non-empty since it is the case for A.
Step 2: Closeness under complement
Let M n F € Ap, then
F\N(MnF)=F\M=_M° nFeAr
eA

(the complements are here understood inside of E).
Step 3: Closeness under countable union

Let (Mn N F)neN < .AF,

U(Man) = (U Mn> NnF e Ap

neN neN
e
» eA

— Remark 1.6: Relation between generated and induced o-algebras
We ask about the relation between Ap and o ({M € A|M < F}) (generated inside of F):
o Apisa c-algebraon F and {M e AIM c F} < Apsoo({Me AIM < F}) < Ar.
elf FeAthenVM e A MnFeAand M nF C F so
Arc{MeAMc F}co({Me AM c F})

and thus Ar =0 ({M € A|M c F})

If FF # A we can have equality or not



o Let £/ :={0,1} , A = {7, {0,1}}, F == {0}, we have

AF = {@,{0}}
o({MeAM c F}) = o ({T}) = {2, {0}}

so Ap = o ({M € A[M < F}).
o Let E = {0,1,2,3}, 4= {&,{0,1},{2,3},{0,1,2,3}}, F == {0,2}, we have
Ap = {,{0},{2},{0,2}}
o({Me AM c F}) = o ({@}) = {,{0,2}}
% so o ({Me AM < F}) < Ap.

— Definition 1.7: Borel sets

Let 7 = {O < R|O is open}, B(R) = o(7T) is called the Borel o-algebra on R and its
elements are called Borel sets.

&

The Borel o-algebra is huge as it has to contain

e Open and closed sets
e Countable intersection of open sets, countable unions of closed sets

e Countable unions of countable intersection of open sets, countable intersection of countable
unions of closed sets

— Definition 1.8: Dynkin system (\-system)

D < P(FE) is a Dynkin system if
e eD
e VWNM<cD McN = N\MeD
oV (M,), NSD /, U M, € D

neN

Let M < P(E),

A(M) = N D
D Dynkin system on E
McD

is the smallest Dynkin system containing M. A(M) is called the Dynkin system generated
by M.

&

Some facts:



e o-Algebras are Dynkin systems.
e A Dynkin system is closed under complement and non-increasing intersections.

o {7,{0,1},{2,3},{1,2},{0,3},{0,1,2,3}} is a Dynkin system in {0, 1,2, 3} that is not a
o-algebra. Indeed it is not closed under union as {0,1} U {0,2} = {0,1,2} ¢ D

e On a finite set F the closeness under increasing countable unions is always satisfied.

The advantage of Dynkin systems is that they are easier to construct than o-algebras and
can be used to obtain og-algebras with the following result.

— Proposition 1.9

A Dynkin system which is closed under intersection if a o-algebra.

— Proof:

Let D < P(F) be a Dynkin system closed under intersection. D is non-empty and closed
under complement so it is also closed under finite unions.
Let (M,), .y S D and define

Mn ::OMZ-ED

=0

~

then, <Mn> is non-decreasing so
neN

* neN neN

— Theorem 1.10: Dynkin

Let M < P(FE) be non-empty and stable under intersection (M is called a m-system), then
o \(M) =a(M).
e if D is a Dynkin system such that M < D then (M) < D.

For the moment, it is hard to see the usefulness of such an abstract theorem, but this will
later lead to uniqueness of some measures. From this follows a Dynkin theorem about measures
stating that if two measures coincide on M then they do so on A(M) = a(M). For example this
can be applied to intervals if one let M = {]a,b[, a,b € R}, then (M) = B(R). The conclusion
is that only one measure on B(R) can extend the length of open intervals.

— Proof:
o(M) is a Dynkin system and M < o (M) hence A(M) < o(M).

For the converse inclusion we prove that A(M) is closed under intersection so A(M) will be
o-algebra containing M. To move toward that goal, we prove that given A € A(M),

w(A) ={B e AM)|An Be A M)}

10



is a Dynkin system:
e FeAM)and AnE=Ae A M)so E e pu(A)
e Let By, By € u(A) such that B; € By, we have By\B; € A\(M) and

An (B\By) = (;4_(\/—.8_22\14 N By € A(M)
eA(M) eA(M)

since An By € A n By. So By\Bj € u(A).
e Let (Bp)nen € p(A) 7, then
An| |B,=|](An B,) e X(M)
eAxM),
50 Uy B € (A).
Let A € A(M), our goal is to prove that u(A) = A(M), i.e. that A(M) is closed under

intersection.

First, assume that B € M, then M < p(B) as M is closed under intersection. Since p(B)
is a Dynkin system, A(M) < u(B) and by construction A\(M) = u(B). We deduce that
A € p(B) meaning that A n B € A(M) thus B € u(A). We proved that M < u(A) so it
follows that pu(A) = A(M).

The second point is a direct consequence of the first as

(M) = A(M) € \(D) =D

11



II Constructing measures

Let (E,.A) be a measurable space.
— Definition I1.1: Measure

1 A Ry is called a measure if
o () =0

oV (M,),n S A disjoints, p (U Mn> = Z u(M,) (o-additivity)

neN neN

(E, A, u) is then called a measured space.

— Example 11.2
e The counting measure on (F,P(E)) defined VM € P(E) by

card(M) if M is finite
+00 else

o) = §

e The dirac mass at a € E defined VM € P(E) by

P 0a(M) = 1p(a)
Let (E, A, 1) be a measured space.
— Definition 11.3: Vocabulary

1 is said to be

e finite if u(FE) < +o0
o o-finite if 3 (M),cpy € A|E = | | My and ¥n e N, u(M,) < +o0

neN
e a probability if u(F) =1

If £ is a topological space and A = B(F) then p is called a Borel measure. It is also called
locally finite if it is finite on compacts sets. Additionally, we define its support to be

supp (1) = A:

F closed|u(F¢)=0

©r

The support of a Borel measure is the smallest closed set containing all the mass (of 0
measure complement).

On a finite set # is finite, on a countable set it is o-finite, on a non countable set it is neither

of both.

12



J, is a probability measure and supp (d,) = {a}.

— Proposition 11.4: Basic properties of measures

1. w is non-decreasing: if M, N € A|]M < N then u(M) < p(N).
Moreover if p(M) < +oo, u(N\M) = u(N) — (M)

Let (M,,)nen € A, then

2. monotonous limit and measure exchange:

(Mn)neN S = (g Mn) = Llerﬂ H(Mn)

3. o-sub-additivity:

Iz (U Mn> < D (M)

neN neN

— Proof:
1. Since N = M u (N\M),
u(N) = p(M) + p(N\M) = p(M)
Moreover if pu(M) < 400, u(N\M) = u(N) — u(M).

2. For (Mp)nen N\, let My = My and ¥n € N, M, 1 = My 1\M,. Let ¥n € N,p € N*,

~

since M,, © M,, and M,, < M, ,_1,

Mn+p N Mn - (Mner\Mnerfl) M Mn = Mn+p N (Mn\Mnerfl) = Mn+p N @ = @

SO (]\r/Tn)neN are disjoints. Then

OM = Mo 0 (Mi\Mo) v -~ v (Mp\Mp—1) = UMz = M,

=0
UM =M

€N ieN
SO

and

" (U Mn> — 1 (U Mn) = >, ul(My) = lim 3 (M) = Jim pu(M,)



For (M, )nen N\, if the intersection has +oo as measure the equality is trivial since
Vn e N, u(M,) = +o0. Otherwise we pass to the complement: ¥n € N, M,, :== My\M,

so (M,)nen and
() ()

— Tim (M) = p(Mo) — lim pu(My)

n—a0

hence
1 (ﬂ Mn) = lim (M)
3. Starting with M, N € A, since N\M < N
w(M o N) = p(N) + p(N\M) < p(N) + p(M)
By induction this extend to finite families, and by the previous point

1t (U Mn> = lim (CJ Mi) < Jiggoiu(Mi) = > u(M,)

neN neN

— Theorem I1.5: Dynkin theorem for measures

Let M < P(E) be closed under intersection and such that £ € M. Let p, v be two finite
measures on (E,o(M)) such that pr = v, then = v.

— Proof:
We prove that D = {M € o(M)|u(M) = v(M)} is a Dynkin system:

eFeMcD
e M NeDIMc N = u(N\M) =u(N)—u(M)=v(N)—v(M)=v(N\M)

o(M,) NED /= u (U Mn> — lim pu(M,) = lim v(M,) = v <U Mn>

n—00 n—00
neN neN

so by the Dynkin theorem for o-algebras, since we have that M < D, we conclude that
% 0(M) < D hence pu = v.

Note that the last point of the proof that D is a Dynkin system really relies on the fact that
the sequence (M,,), .\ is non-decreasing to be able to exchange the limits and the measures. We
cannot use this proof on o-algebra directly hence the need to introduce Dynkin systems.

14



— Definition I1.6: induced measure

{M e AM < F}.

Let F' € A then pup = ji4, is a measure on (F, Ap) called the induced measure on F'.
If u(F) < 400 then pp is the only measure on (F,Ap) that coincide with p on

— Proof:

Since F' € A, we have that Ap = A and pp is a measure on (F, Ap).
The uniqueness of up is a consequence of Remark 1.6 which implies that

Ar = o ({M e AIM c F})

% and of Theorem II.5.
— Definition I1.7: limits of sets

Let (M,,), .y € P(E), we define

neN —

lim inf M, = U ﬁ M;

neN i=n

lim sup M,, = ﬂ LOOJ M;

(=X neN i=n

If these two sets are equal it is then called the limit of (M, )nen-

©r

Some basics facts:

e lim inf M,, < limsup M,,
=0 n—00
o (M), ., /= liminf M, = | | M,
n—00 s

N = limsup M,, = ﬂ M,,

n—0o0

n—0o0

o (M,)

n—00
n—0o0

— Lemma 11.8: Borel-Cantell
Let (M), .y S A, then

Z p(M,) <40 = p (limsup Mn) =0

neN (=L

This is not to be confused with the basic fact about convergent series

lim sup p(M,) = p (ﬂ O Mz)
=9 neN i=n

By monotonicity it also follows that

1 (lim inf Mn) =0

n—00

15



— Proof:
By monotonicity and o-sub-additivity,

o (limsup Mn) = (ﬂ U MZ> < @ (U MZ> < Z,u(Mn) njOOO

% n—w neN i=n i=n
— Definition I1.9: Negligible sets

e Negligible sets of (F, A, ) are elements of

N, ={NeP(E)|IM € AN < M and p(M) = 0}

e If IN € N, such that a proposition P, is true Yz € E\N then P, is said to be true
i — a.e. (almost everywhere).

o If NV, € A, then (E, A, p) is called complete.

£ Example 11.10

The absolute value is almost everywhere continuous for every measure that evaluate {0} to 0.

The problem of a measure space not being complete is that we miss on the opportunity to
measure sets whose measure should obviously be 0 since they are included in a measurable set
of 0 measure. But we have a general process to make all measure complete by extending them
to a lager o-algebra.

— Proposition 11.11: Completion of measures

The following is a o-algebra called the completed o-algebra:
A" = {M e P(E)|AN;, N, € A|N; € M < N, and p(N,\Ny) = 0} (IL.1)
and
1. A =0(AUN,)

2. The following it a well defined measure on (E, A") called the completed measure:

= . Z!L - ﬁ_}r
UM (V) = (M)

Moreover, 1 is the unique measure on (F, ZM) extending .

3. (B, A" 7i) is complete.

— Proof:

Try it yourself following Subsection VII.1.

1. Step 1: A" < o(A uN,)

16



Let M € A" and Ny, N, according to (IL.1), then M\N; € No\N; € A so M\N; e N,
and

M= (MN)uv N ec(AUN,)
= —
ENL eA
Step 2: AUN, c A

Taking Ny = N, = M we see that A < A"

Let N € N, then 3M € A such that N M and u(M) = 0, thus choosing N, = &
and No = M we get that N € A"

Step 3: A" is a o-algebra

e Ac A s0o A"+ &
o Let M e A" and Ny, N, according to (I1.1), we prove that M¢ e A" by noticing
that N§ € M° < N¢ and N¢, N € A and NANS = No\ ;.

o Let (M,)nen € A" and (Ny,,, Na,), _ according to (IL1), then

U Mw s | Mac | Vo

neN neN neN

eA eA

and

(U NM> \[J Min € | Non\ N1

neN neN neN

so by o-sub-additivity,

v ((U NQ,n> \U N1,n> < Z M(N2,n\N1,n) =0

neN neN neN

This proves that
U M, e A"

neN

Step 4: Conclusion

The two previous steps imply that A u N, < A"

o Step 5: 1 is well defined

17



Let M € A" and assume that ANy, N, ]Vl, NQ € A such that
N1 <€ M c N, ngMgNQ
p(N2\N1) = pu <N2\N1) =0

First remark that

#(N2) = p(N2\N1) + p(N1) = p(N1)

and similarly ,u(]%) = 1 (Nl) Then, since

(N2 M ]\72) \Nl - Ng\Nl

p-

Y

eA

we get that (N2 N ]\72) \V; =0 so
% (N2 N N2> = p(Ny)
Exchanging the roles of Ny, Ny and Nl, ]\727 we obtain
1% <N2 N NQ) =M <N1>
so p(N1) = p(Na) = p <]\71> =M (KB)

Step 6: 11 extends u

If M € A, taking Ny = Ny = M we see that

(M) = p(Ny) = p(M)
Step 7: 1 is a measure

 Since @ € A, T(@) = u(@) = 0.

o Let (M,),.n S a° disjoints and (N ,), . according to (II.1) which are also
disjoints since Vn € N, Ny ,, < M,,. Hence

; (U Mn> —u (U N) = n (i) = Y

neN neN neN neN

Step 8: Uniqueness

18



Assume that 7 is another measure on (E, A") such that nma = . Let M € A" and
N1, Ny according to (I1.1), then

n(M) = n(M\Ny) + n(N1)
But

I ]\f: ) = u(N1) = B(M) and n(M\Ny) < TI(N2>N1) = p(N2\N1) = 0

so (M) = E(M).

. Let M € A" and Ny, N, according to (I1.1). Assume that 7i(M) = 0 and let N = M.
Then N € N, € A and pu(Ny) = (M) = 0so N e N, < A"

19



II1 Lebesgue’s measure

— Definition III.1: Outer measure

p* : P(E) — Ry is an outer measure on E if

(D) = 0
e 1* is non decreasing: VM, N e P(E),M € N — p*(M) < p*(N)

e 1/* is o-sub-additive: Y (M, )nen € P(E), p* (U Mn> < 2 (M)
neN neN
In addition, M € P(FE) is called p*-measurable if YN € P(E),

WH(N) = p*(N o M) + " (N\M)

and the set of p*-measurable sets is denoted A, .

@
Remark that with the o-sub-additivity, it is enough the check that
YN & P(E), u*(N) > u*(N o M) + p*(N\M)
to prove the p*-measurability of M.
— Definition II1.2: Lebesque outer measure
Let M < R, define
I(M) = {(an,bn)neN |Vn e N,a, <b, and M < U]an,bn[}
neN
*(M) = inf b, — a,
( ) (an,bn)neNEI(M) 1;\‘( )
©»

Z(M) is the set of open intervals covering of M. Given such a covering (ay,, by, )nen € Z(M),

the value
Z (bn - @n)

neN

is an upper bound of what we would to define as the length of M. This taking the infimum
over Z(M) we attribute to M the length of the smallest possible covering by open intervals (the
minimizer might not exists).

— Proof:
First, note that VM < R, Z(M) # & since (—n,n)nen € Z(M) as

M§R=U]—n,n[

neN

So the Lebesgue outer measure is well defined as an infimum over positive values.
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We check that [* is indeed an outer measure:
e (0,0)eZ(F)soI*(F)<0—-0=0

e Let M, N € P(R)|M < N, a covering of N is a covering of M so Z(N) € Z(M) and as
a consequence [*(M) < I*(N).

o Let (My)pen S P(E), let € > 0, then by property of the infimum, Vn €
N, 3(@nm; bnm)men € Z(M,,) such that

€

(M) = (boim — Gngn) — o

meN

then

which means that

(an,ma bn,m)n,meN el (U Mn)
neN

SO
* * € . *
l (U Mn) < D (bum — ngm) < ) (z (M,,) + 27) = > (M) + 2¢
neN n,meN neN neN
3 and one gets o-sub-additivity of {* by taking ¢ — 0.

— Proposition II1.3
1. Va < b,0*([a,b]) =b—a
Let M € P(R), A € R we denote AM = {\z,z € M} and A\ + M = {\ + x,z € M}.
2. [* is translation invariant: [*(\ + M) = I*(M)

3. [* scaled with dilatations: I*(AM) = |\|[*(M)

— Proof:
1. Let € > 0, Ja—e¢, b+¢[e Z([a, b]) so I*([a,b]) < b—a+2¢e. Taking e — 0, [*([A,b]) < b—a.
Let (an, bn)nen € Z([a,b]), by compactness of [a,b], 3N € N such that

[a,0] = | |]an,bu]

n=0
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then we can prove by induction (Exercice) that

N
b—a < 2 (b, — an)
n=0

SO

N

Z(bn—an)>b—a

neN
and passing to the infimum, [*([a,b]) = b — a.
2. Note that

(@n; bu)nen € ZA+ M) = A+ M < | Jlan, bo[ <= M < | J]an — A b — A[
neN neN

> (an, — N\ by — Npen € Z(M)
SO

FA+ M) = inf b, —a,) = inf by —A—a, + A
( ) in )Z( an) in (M)Z( a )

(an*/\yban)neNEZ(M neN (an’bn)neNEI neN
=[*(M)
. 3. Similar, see notes

— Proposition II1.4: From outer measure to measure

(E, A, ,ul*A *> is a complete measured space.
i

— Proof:
Try it yourself following Subsection VII.2.
Step 1: A« is closed under intersection

Let A,B € A,x and N € P(E). Decomposing N with respect to A and then N n A and
N n A€ with respect to B we obtain

pr(N) = p*(N 0 A) + p*(N n A
=u*(NnAnB)+u*(NnAn B+ u*(NnA°nB)+ u* (N n A°n B°) (IIL.1)

Applying this to N n (A U B) instead of N one gets
p*(Nn(AuB))=u*(NnAnB)+u*(NnAn B+ pu*(NnA°n B) (I11.2)
since

(AuB)n(AnB)=AnB
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(AuB)n(AnB°) =AnB°
(AuB)n(A°nB)=A°nB
(AuB)n (A°n B°) =g

Inserting (II1.2) in (III.1) we obtain
w(N)=p*(Nn(AuB))+ p*(N n A°n BY)

meaning that A U B € A«
Step 2: Disjoint unions

Assuming that A n B = ¢J, since A € B® and B < A°, (I11.2) becomes
p*(Nn(AuB))=p*"(NnA)+pu*(NnB)
By induction, this generalizes to: Vn € N, V(A4;)i—o.n S A,+ disjoints,

w* (N N (O AZ>> = Zn:u*(N N A;) (I1L.3)

Step 3: A+ is a o-algebra

e Let N e P(E),
p*(N) = p*(N n &) + u*(N n E)
so e A,x.
e By definition of A,x, M € A,x < M°e A,+ so A« is closed under complement.
o Let (M, )nen S Ay, define
My = M,

Vn e Na Mn-ﬁ-l = Mn+1\ U Mz

=0

so that Vn e N,
U U i € .Au*
i=0 i=0

and (]\7”> are not disjoints. Let N € P(FE), we can apply (II1.3) and then use the

/ neN
monotonicity of p*:

e (v oo (v ()
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:Zu*(NmM>+u* (Nm (
i=0 j
>Z,u*<Nm]\Z>+,u*<Nm< MZ>
=0 €N
Taking the limit n — o0 and using o-sub-additivity,

pr(N) = )t (NmM) + " (Nm (UM C

ieN

> p* U(Nm]\%))—i—/f (Nm (

ieN

= u* NmUZ\Z) + p* (Nm( MZ> )
1eN €N

= NmUMi>+u* <Nm< M,;
i€

m
b

=
N——
~

€N

meaning that
U Mz € AN*
ieN
Step 4: 4, is a measure
With the previous conclusion we now know that (I11.4) is an equality so
pr(N) = pt (Nﬂ 1\7) + (Nm (UM> )
1€N 1€N

Assuming that (MM,,), . are disjoint, Vi € N, M, = M;, so by choosing

N =] M,

neN

o () =3 () o) o (0~ (o))

= Z p*(My)

neN

we get

p* () =0 so /‘714“* is a measure.
Step 5: completeness
Let M € A+ with p*(M)=0and A< M. Let N e P(E), since N n A< M,
p (N N A) + p* (N 0 A°) < p*(M) + p*(N) = p*(N)
so Ae Ax.
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— Definition II1.5: Lebesgue sets

The Lebesgue o-algebra on R is L(R) := Ax, its elements are called real Lebesgue sets and
the Lebesgue measure on R is [ := l|*£(R)

~ Theorem IIL6 |
L(R) = B(R)

We have the following strict inclusions (see tutorials)

B(R) = L(R) = P(R)

We notice that we provided two different constructions of the Lebesgue o-algebra:

e B(R) the completion of the Borel g-algebra which is well suited for proving that sets are
Lebesgue sets (for example all Borel sets are immediately Lebesgue sets).

e A;x which is interesting to compute the Lebesgue measure of a given measurable sets
using the explicit defintion of [*. Since we proved it for the Lebesgue outer measure, we
know that the Lebesgue measure evaluate each real interval to its length.

A closed interval [a,b] is a Borel set thus it is a Lebesgue set, so using Proposition I11.3,
l([a,b]) =1*([a,b]) =b—a
SO
[(la,b]) = U([a,b]) — I({a}) = ([a, ])
and similarly

l([a,0]) = i(Ja,b]) = I([a,b]) = I(]a,b])

Another consequence is that if M € L(R) is countable,
(M) =l<U m) = Y I({z}) = > 0=0
zeM zeM zeM
Since Q € L(R) is a Borel set as countable union of closed sets, we obtain that [(Q) = 0.

Finally, we remark that [ is o-finite since

VneN,l([-n,n]) =2n and R = U[—n,n]

neN
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— Proof:

Step 1: B(R) < L(R)

Since B(R) = o({] — 0, a[, a € R}) it is sufficient to prove that Ya € R, ] — o0, ale L(R). Let
a€R,N € P(E), our goal is to prove that

I*(]—o0,a] ) =1*(]—o0,a] nN) +1*( ] — 0, a[ \N)
Let (an,bn)nen € Z(IN), € > 0, we have that
lan, by N ] — 0, a] = | min(a, a,), min(a, b,)[

lan, bn| N[a, +o] € |max(a,a,) — %,max(a, bn)|

2
] =o0,a[ "N = U | min(a, a,), min(a, b,)|
] —o0,a[ \N < U | max(a, a,) — %,max(a,bn)[
and

I*(]—o0,a] nN) +1*( ] — o0,a[ \N)

= Z (min(a, b,) — min(a, a,) + max(a, b,) — max(a, a,) + 2%)

neN

=Z(a+bn—a—an)+2€—> (b, — ay)

e—0
neN neN

Taking the infimum over Z(N), we obtain that
I*(]—o0,a[ nN) +1*( ] —o0,a] \N) < I*(N)

Step 2: B(R) < L(R)
Assume that N € P(E) is a negligible set of (R, B(R),1), then 3M € B(R) such that N € M
and (M) = 0. But L(R) is complete and M € L(R) so N € L(R). Therefore
Nis® G B(R) < L(R)

Moreover L(R) is a o-algebra so

B(R) = o (N"5® U B(R)) < L(R)

Step 3: L(R) < B(R)
Let M € L(R) we construct a bigger Borel set of same measure.

Vk € N*, 3(an g, bk )nen € Z(M) such that

1
l*<M> > Z(bn’k — amk) — E

neN
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Then, let

By = (] [ Jank buil € BR)

keN* neN

Then Yk € N*,

1

I*(By) < I* (U ]an,k,bmk[) < Z(b”’k = an,k) < U*(M) + A
neN neN

so [*(Byy) < I*(M). Since M < By the proved that (*(Bys) = ((By) = (M) = I[(M).

Applying this to M,, == [—-n,n]n M, N,, = [-n,n]\M, € L(R) we get By, , By, € B(R) such

that

so [-n,n\Bn, < [-n,n]\NV, = M,, € By, and

n

[ (B, \ ([=n,n]\Bn,)) = 1 (Bu,) — (2n — 1 (Bn,)) = l(Bu,) — 1 (Bum,) =0

so M, € B(R) and

M = | | M, € BR)
3 neN

— Theorem I1I1.7: Characterization of the Lebesque measure

The Lebesgue measure is the unique measure on (R, £(R)) extending the length of intervals.

— Proof:

Let p be another measure on (R, £(R)) such that Ya < b, u([a,b]) = b —a. Then Vn €
N, u([—n,n]) = [([-n,n]) = 2n. By Theorem IL.5,

H15(fn,~n]) = B ([n,—n))
Let M € B(R) and denote M,, == M n [—n,n] € B([—n,n]) (exercice), then

I(M) =1 < Mn> = lim {(M,) = lim u(M,) = p (U Mn) — (M)

neN

So




and by uniqueness of the completed measure (Proposition I1.11)

M) = lB®
. but since B(R) = £(R) (Theorem IIL.6) we conclude that p = L.
— Proposition II1.8
Let M € P(R),AeR
e [ is translation invariant: [(A + M) = [(M)

e [ scaled with dilatations: [(AM) = |\ (M)

L CH

— Proof:

Step 1: L(R) is closed under translation:
Let M € L(R),N € P(R),AeR,

F(NnA+M)+IF(NOA+M) =" A+ (N=-X)nM)+1*(A+ (N -I)\M)
=I*(N=X)nM)+1I*(N—-A\M)
=[*(N —X) =I*(N)

so A+ M € L(R).

Step 2: L(R) is closed under dilatations:

Let M € L(R), N € P(R), A e R, if A =0, then AM = {0} € L(R). Otherwise,

" (N 0 (AM)) + (VM) = 1% (A (('N) - M) + 10 (0 (A7 N)\M))
= A1 (ATIN) o M) + A2 (ATTN)\M)
= (AN = ()

so AM € L(R).
Step 3: Conclusion:

. | inherit the properties of [* from Proposition IIL.3 on £(R) since | = I7 gy

— Theorem I11.9: Translation invariant and scaling characterization of [

Let p be a measure on (R, £(R)), with u([0,1]) < 400,

1. If p is translation invariant, then p = p([0,1]) -1

2. It VM e L(R),¥A € R, u(AM) = |A| (M) then p([0,1]) - L.

Fixing ([0, 1]) implies that p = [ in the above statements. Thus, [ is the only translation
invariant measure on (R, £(R)) such that pu([0,1]) = 1.
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— Proof:

1. Assume by contradiction that 3z € E|u({z}) > 0 then u = p({x}) - # and p([0,1]) =
+0. So Vx € E, u({x}) = 0.

LetgeQ,

and similarly

(o) ()

Let x € R and <f1ﬁ> C Q a non-increasing sequence such converging to z,

ul(0,41) = (ﬂ [op—]) = tim g (|02 ) = tim B0, 1) = (. 1)

if 11([0,1]) = 0 then u = 0 and the result is satisfied, otherwise ([0, 1]) ' u extends
the length of intervals to by Theorem II1.7, u([0,1])*u = L.

2. From

u({0}) +2u(10,1]) = p({0}) + p( 10,2]) = u([0,2]) = 2u([0, 1])
= 2(u({0}) + p( 10, 1]))

it follows that p({0}) = 0.
Assume by contradiction that Ja € R*|u({a}) > 0, then Vx € R,

p{a}) = lol w({1)) = | 2| utta)
so u([0,1]) = 400. Thus, Yz € R, u({z}) =
Let x € Ry,

p([0, 2]) = 2u([0,1] = p([—, 0])

SO

0<a<b —a)u([0, 1])
if 0 < a <b, then u([a,b]) = p([a,0]) + u([0,b]) = (—a + b)u([0, 1])
0 < a<b, then u([a,b]) = u([a,0]) — p([b,0]) = (—a — (=b))u([0,1])

% The conclusion is then the same than for the translation invariant case.
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IV Measurable functions

Let (E, A) and (F, ) be two measurable sets.
|/ Definition IV.1: Measurable function

A function f : (E, A) — (F, ) is called measurable is VM € 3, f~}(M) e A
©»

This is analogous to continuous functions as f : R — R is continuous if and only if VO < R
open, [~1(O) is open.

Let M € P(E), 1y : (E, A) — ({0,1},P ({0,1})) is measurable (as a function) if and only
if M € A (M is measurable as a set). This follows from 1,/ ({1}) = M and 1,; ({0}) = M°.

Next we check that the measurability of a function is unchanged if one restrict the codomain
of the function to its range.

— Proposition IV.2
f:(E, A) — (F,f) is measurable if and only if f : (E, A) — (ran(f), Bran(s))

— Proof:
Recalling that

Bran(r) = {M nran(f), M € B}

the result follows from the fact that VM € 3,

% fH(M) = f7H(M nran(f))

We only need to check measurability on the generators of a o-algebra:

— Proposition I1V.3
Let MCS F, f:(E,A) — (F,0(M)) is measurable if and only if YM € M, f~}(M)e A

— Proof:
Assume that VM € M, f~1(M) € A, we define
Ap = {M e a(M)|f7H(M)}
By construction, M < A;. Then we proove that A; is a o-algebra:
o [H(F)=EecAsoFe Ay
o Let M e Ay, f7H (M) = f~H(M)°e Aso Me A
o Let (M,),n S Ay, then

f_l (U Mn> = Uf_l(Mn)eA

neN neN
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Sp

UMnEAf

neN

This implies that o(M) < Ay hence o(M) = A meaning that f is measurable. The
. contraposition simply follows from the fact that M < o(M).

As a corollary, all continuous functions are measurable with respect to the Borel o-algebras.
Indeed a Borel o-algebra if generated by open sets and the pre-imagine of an open set by a
continuous function is an open set.

— Proposition 1V.4

1. Let f: (E,A) — (F,B) and g : (F,5) — (G,I') be two measurable functions, then
of:(F,A) — (G,T') is measurable.

2. Let f,: (E, A) — (R,B(R)) be a sequence of measurable functions, then

sup fn, 1nf fn, limsup f,, hm mf fn

neN n— 00

are measurable.

&
— Proof:
1. Let M el then (go f)"Y(M) = f(g " (M))e A
&

2. Using Proposition IV.3 and

we only need to prove that Va € R,

(supfn)_l(]a,+oo[)= {x€E| sup f, (2) >a} —{zeE|IneN| f,(z) > a)

neN
=U{er|fn ) >a} = Uf Ja,4+xo[ ) e A
neN neNﬁ_/

The same holds for the infimum using
B(R) = o({] — «,a[,a eR})
Then we apply this to

limsup f, = inlfl sup fr, hm 1nf fn = sup inf f;

3 n—00 neEN k>n neN k=n
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— Theorem IV.5: Limit of measurable functions

If f, — f pointwise, then f is measurable.

Let (X, d) be a metric space and f, : (E,.A) — (X, B(X)) a sequence of measurable functions.

— Proof:

Let O be an open set of X. We introduce

X - R
I e o d(z, 0°) = inf eo- d(x,y)

Denote O,, = g~* ( ]%,00[ )7
Step 1: 0= UHEN O”’

Let z € O. O is open so In € N* such that

B<x,l) cO
n

Thus Yy € O, d(z,y) > = and g(z) > + > —5 meaning that z € Oy 4.
re®° = g(z)=0so0

1
x € UO" — EIneN*Ig(x)>g = 20

neN*

Step 2: ¢ is continuous

Vze X, d(z,z) < d(z,y) + d(y, z) hence taking the infimum over z € O° we obtain
g(x) < d(z,y) + 9(y)
thus
9(x) = g(y) < d(z,y)
Exchanging the roles of x and y we get
9(y) — g(z) < d(y, x) = d(z,y)

l9(z) — g(y)| < d(z,y)

Step 3: M e A

From the previous steps we know that O,, is open and that

) =500

neN
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SO
re fHO) < IneN*| klim fr(z) = f(z) € O,
<= IneN* ImeN|Vk>=m, fu(x)e O,

therefore

UUﬂ fk(n) €A

eN* meN k=m
3 i €A since (Dn open

— Definition IV.6: simple functions

A simple function is a function of the form

= > el
k=0

with n € N, (Ax)pn S R* and (Mp)kepo.n] < A disjoints.

— Proposition IV.7

Simple functions are measurable and closed under sum and product.

— Proof:
Let

= Z Al
k=0

be a simple function on (E, A). s is valued in {0} U {\x, [0,n]} and

- () <

V[0,n], s ' ({\}) = M e A

so s i1s measurable. Let

h = Z ququ
q=0

be another simple function on (F,.A) and ¢ € R;. Then

n

sh = Z Z )\k,uqlequ = Z Z )‘k:uqleﬁNq

k=0 q=0 k=04=0

s+ h = Z Z()\k a4 Mq)leﬁNq A Z )\k’le\U;”:o N, T Z 'uqqu\UZ:oMk
3 k=0 g=0 k=0 q=0
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Simple functions are also closed under multiplication by a non-negative constant since a
non-negative constant is a simple function.

Theorem IV.8

Let f: (B, A) — R, measurable. Then f is the pointwise increasing limit of non negative
simple functions. If f real valued, then it is the pointwise limit of simple functions.

— Proof:
First, we assume that f >0
Step 1: Constructing a sequence

Let n € N*, we decompose

R, - (@ [k;”l;”]) [l 4]

k=1

Let

ts= 1 (|52 5]) B 10 e

T

so that

we introduce

Step 2: (fu)nen is increasing

o If v € A, . We start by remarking that

k—1 k B 26— 2 2k —1 2k—1 2k
on 'on| — | gn+l 7 9n+l = on+l  ontl

s0 Apk = Anti126—1 U Apti0r and either

2k—-2 k-1

fra@ =222 AL p
or
2k—1 k-1
fori(x) = on+l = on = fu(z)
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e If x € B, then either x € B, ;1 € B,, and

fasi(@) =n+1>n = fu(2)

(0)8

(n+1)2n+1
k-1 k
f(@)en,n+1[= U [W’%[
k=n2n+l41
so 3k € [n2"™ + 1, (n + 1)2"*!] such that z € A, x and
k—1
Fari(2) = Sgmr = 1 = fu(2)

Step 3: f, — f pointwise

By construction f, < f. Let z € E.

o If f(x) = 400, then Vn e N*,

ful@) =1 = +00= f(z)

n—00

e Otherwise Vn > f(z), 3k € [1,n2"] | f(z) € [&L, £] so fu(z) = &L and

F(@) — ful@) < = — 0

<
2N p—0

Step 4: If f real valued

Let fi =max(f,0) >0 and f- = —min(f,0) > 0 so that f = f, — f_. From the previous
steps, there exists sequences of simple functions (f +)neN, (fn.—)nen such that

fn,+ e f+ fn,— e f—
n—00 n—00

SO

fn,+ _ fn,— - f

n—0o0
. and f,, y — f, — is simple due to Proposition IV.7.
— Proposition 1V.9

Let f,g: (F,A) — R measurable and A € R then f + g, fg, Af are measurable.
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— Proof:

From Theorem V.8, there exists sequences of simple functions (f,)nen, (gn)nen such that

fo = 90 — g
n—ao0 n

—00

and thus

fotgn — f+yg
n—0o0
Ja@n = i@
n—00
An — Af

n—0o0

while f,, + gn, fngn, Afn are measurable due to Proposition IV.7. We conclude with Theorem
k TV.5.
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V Lebesgue’s integral

Let (E, A, 1) be a measured space.
— Definition V.1: Lebesgue integral

e Given M € A, we define

J]-Mdﬂ = p(M)

e Given a non-negative simple function

S = Z )\lcle

k=0
we define
Jsdu = > M f Ly, dps
E k=0 g

e Given f: (E, A, 1) — R, a non-negative measurable function we define

ffdu = sup fsdu
s simple
E

0<s<f E

e We say that a measurable function f : (E, A, u) — R is integrable if

[171< 420

bjfdu — bj Fud - bj fodys

e Given M € A, if f1,, is non-negative or integrable, we define

Al fp = EfflMdu

and in this case define

A few comments:

e Integral have to computed with the convention that 0-co0 =0
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e The integral for a simple function is

JSdM = Zn: Ap(My)

k=0

e Taking y = [ leads to connections with the Riemann integral.

| s = [ s@duco)

e We can extend the definition of the integral to non-integrable measurable functions
f + E — R such that

e Other notation:

Jerd,u = 400 Xor Jf_d,u =+
E E

through

deu = ff+du - ffdu

— Proof:

We need to check that the definition of the Lebesgue integral of a simple function is
independent of the choice of measurable sets. Assume that

S = Z )\kle = Z /J,qqu
k=1 g=1
Denote
My = E\| My, No=E\|JNy, do=po=0
k=1 =
we still have that
s= > Melag, = D gl
k=0 q=0

and then Vk € [0,n] ,Vg e [0,m], My n N, # & = A\ = py s0

(MkmUNq> Z Aep(My 0 Ny) ZZquMkmN

(0] k=0 qg=0

q=
<Nq M LnJ Mk>
k=0

M:

> Aep(My) =

k=0

x>
i
=}

,U(Nq)

I
Ms
\éMS i M:

Q
Il
=}
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hence

Zn] Appt(My) = i Hqt(Ng)

3 k=1
then
— Example V.2: The Dirac mass

If ae E and p == ¢, then

| 745, = s

e Indicator functions: let M € A, then

flMdaa — 5(M) = 1u(a)

E

e Simple functions: let

S = 2 )\lcle
k=0

be a non-negative simple function. Then

Jsd&a = zn: Akéa(Mk) = Zn: )\kle(a) = S(CL)
k=0

E k=0

e Non negative measurable functions: let f : £ — R, measurable, then

s simple
0<s<f

de% = sup s(a) < f(a)

But then we have equality in the above by choosing s = f(a)1,.

e Real valued measurable functions: let f : E — R, measurable, since

f 1£]d6, = | £(a)

we see that f is integrable if and only if |f(a)| < +00 and in this case

| 70, = | gt | 1-d8, = 11(@) - £-(0) = Fla)
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— Proposition V.3
Let f,g: (E, A, ) — R measurable, the following hold as soon as the integrals are defined:

1. Markov’s inequality: Va > 0,

i (£ ([a, +0])) f\f\du

2. If w(E) =0or f =0, then

deuzo

3. The integral is non-decreasing: let M, N € A,

.f< g=>ffdu fgdu

CMC N30 f ffdu

— Proof:

1. |f| is measurable as composition of f and |-| and als-1((4 1)) is @ non-negative simple
function such that

alf ([a,+0o0]) |f’

therefore

ap(f ([, +o0)) f\f\du

2. If w(E) =0, then VM € A, u(M) = 0 so

JlMdu = u(M) =0

thus the same follows for simple functions and f, f being integrable as

bj|f|du=o

Next, we remark that the 0 function can be written as 0 = 14 so

JOdu = flzdu = () =0

E E

40



3. Assume that 0 < f and let s be a non-negative simple function.
s

<9
Since s < f = s<g

)

{s simple |0 < s < f} < {s simple |0 < s < g}

deu < fgdu

E E

SO

f-=g-so0

Jdu = E[fﬂu—}!f-du < fg+du— fg-du = fgdu

E E E E

As a consequence if M € N and f > 0, then f1,, < fly and

J fdu = EjflMdu < ;! Fdp = J Fd

— Theorem V.4: Monotone convergence

Now, assume that f,g : E — R are integrable such that f < ¢, then f, < g, and

Let f, : (E, A, u) — R, be a non decreasing sequence of measurable functions, then

lim | fo.dp = f lim f,dup
n—00 n—a0

E E

— Proof:

Step 1: A first lemma
Let N € A, we remark that

A - R
ENSA e (N A M)

is a measure as
o un() = () =0
o If (M, )nen € A disjoints, then (N n M, )en are also disjoints so

i (UMn) :u<Nm UMn> :M<U(N0Mn)> = > (N A M,)

neN neN neN neN

= i (My)

neN
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Let

be a simple function, then

is a also a measure, as sum of measures, since

Jsdu = fslMdu — f (Z )\klelM> dp = f (Z )\kleMk> dp = > Aepp(M  My,)
k=0 B k=0

M E ) k=0

= " A (My,)
k=0

Step 2: A second lemma

Let t € R, then with the notations from the previous lemma,

n

ts = Z t)\kle

k=0
is a simple function so

JtSd,u = i tARp(My) = ti Akp(My) = tJSd,u

E k=0 k=0

Step 3: Proof
let f be the pointwise limit of (f,)nen-

As Vn e N, f, < f, by monotonicity of the integral,

bj fadp < lfdu

Taking the limit n — oo, we obtain
lim and,u < ffd,u
n—a0
E E
Let s be a simple function such that 0 < s < f. Our goal is to prove that

Jsdu < lim and,u
n—a0
E

E
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so that we obtain the result by taking the supremum over s.
Let t € [0, 1] and denote Vn € N,

M, = {x e E|ts(z) < fu(z)} € A
which is a non-decreasing sequence in n. Let x € E.

o If f(z) =0, then Vne N, Vte [0,1], x € M,
e Otherwise, ts(z) < tf(z) < f(z) and up to a rank in n, ts(x) < f,(x)

Thus

Moy = E

neN

and
J sdi = ps(Mni) = pus (U Mn,t> = pis(E) = Jsdu
Mot neN B
By definition of M,,;, Vn e N,
13 J sdp = J stdp < f frdp < ffndg
Mn,t Mn,t Mn,t E
Taking the limit n — oo, we get

n—0o0
E E

tfsdu < lim | fo.dp (V.1)

% and we conclude by taking the limit ¢ — 1.

— Proposition V.5

Let f,g: (E, A, 1) — R be measurable functions, then, as long as the integrals make sense,
we have the followings properties:

1. Linearity: Va,be R

f(af + bg)dp = aifdu + ngdu

E E

2. Chasles relation: VM, N € A disjoints,

f fdp = ffdwffdu

MUN
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A useful consequence is that if f = g p-a.e., meaning that 3N € A such that u(N) = 0 and
fine = g|ne, we have that

ffdu ffdwffdu fgdwrfgdu Jgdu

N¢e N E
;v_z —
=0 =0

The implication of this is that all the properties of the Lebesgue integral are true if the functions
are only defined p-a.e. For example, if f < g p-a.e., then

ffdu < fgdu
E E

— Proof:
1. Multiplication by a scalar property: let A € R.

o If A >0, then for f > 0, using (V.1) with the change of variable 5 := {,

kad,uz sup fsduz sup J)\Ed,uz)\ sup Jgd,uz)\de,u

s simple S simple S simple
E 0<s<Af 0<s<f 0<s<f E

For f real valued, as (Af)y = Af., (Af)- =Af_,

[ A= [apedu [ Atdp =2 [ gudu= [ 1t =2 | g
E E E

E E E
o If A =0, then
J)\fdu:O:)\ffdu
e TEA <O, for f >0, (Af)s =0, (Af)_ = —Af so
[ A= f fAf =~ [ N s == (%) [ g = A [ g

For f real valued, (Af), = —Af_, (Af)_ = =Af} so
[ At = [0 fdi= [N o= =3 [ £t x [ fru= 2 [ s
E E E E E E
Sum property:
e For simple functions, starting with the notation from (IV.1), by o-additivity,

n m

Js+hd,u DU 0w + o)t (My 0 N,) +2)\ku<Mk\UNq>
k=0 q=0

B k=0 q=0
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s =

=2
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+
NgE
>~

i
o
(=]

+
NgE
=
=
—
2
i Ms ?Hrcz &

q=0
= > Aep(My) + fsdu + Jhdu
L=l E E

e For f, g > 0, there exists non negative, non decreasing sequences of simple functions
(fn)neN, (gn)nen such that f,, — f, g, — ¢. Then, by monotone convergence,
n—a0 n—o0

E E E E E E

e For f, g real valued,

frag=(+9)+—(f+9)-
Jtg=fr—f-+g9+—9g-
= (f+g)++f-+g-=(f+9)-+ fs+9+

s J(f+9)+dM+Jf—dM+Jg—du=J(f+g)_du+Jf+du+bjg+du

E E

E

:Jfﬂhq +dp — J(f+g —dp = ff+du ff du+fg+du Jg dp

= ff+g dp = ffdwrjgdu

E

2. As a consequence of linearity,
J fdp = Jf 1mon)d ff(1M+1N)du=JflMdu+fledu
E E

MuN
= ffdm | ra

M N
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— Lemma V.6: Fuatou

Let f, : (E, A, i) — Ry be a measurable function, then

flim inf f,dp < lim infjfndu
n—0o0
E

n—ao0
E

— Proof:

VneN, inf fi < f, so
k=n

Y e—

iﬂﬁw<fhw
k=>n

E
thus

n—00

lim infj inf frdp < lim infjfnd,u
k=n n—00
E E
But, the left term is non-decreasing, so by monotone convergence

liminf | inf frdp = lim Jinf fedp = f lim inf frdu = Jlim inf f,du
n—0o0 k=>n n—00 k=>n n—o k=n n—0o0
E E E E

% which concludes.

— Theorem V.7: Dominated convergence

Let f,: (E, A, 1) — R be a sequence of measurable functions. If
o ,'Xf.E—->R
n—0o0
e Jg: E — R p-integrable such that Vn e R, |f,| < g p-a.e.

then f is integrable and

lim ffndﬂ = deﬂ
n—a0
E E

— Proof:
Denote Vn € N, h,, == 29 — | f — f,|, then since
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so h, = 0 p-a.e. With Fatou’s lemma,

Jliminfhnd,u:2fgd,u hmlnffh d,u—QJgd,u—i-hmlnf J|f fnldu

n—0o0
E E E
- w1151
n—0o0
E

~
<0

SO

hmf|f faldu < hmsupf|f—fn]du<0

n—00

We conclude with the monotonicity of the integral:

bjfndu—bjfdu - bj(fn—f)du <£\fn—f|dunjoo0
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VI Applications and connections

— Proposition VI.1: Link with Riemann integral

Let f € C%[a,b],R), then

jb f@is = | f@))
a [

a7b]

C
Note that the left hand site of the equality is understood as the Riemann integral and the
right and side as the Lebesgue integral with respect to the Lebesgue measure.

— Proof:

First assume that f > 0 and for simplicity that [a,b] = [0,1]. For n € N* and k € [1,2"],

denote
k—1 k
[n = Y A
=5 |

From Riemann integration theory, we know that

1 7w n

1S . . )
[/t =t 3 = fim 33 (i) 10000) = i, [ st
) =

k=1

with

Noticing that
In,k = [n+1,2k71 Y [n+1,2k
we see that (s,)nen* is non-decreasing. Let z € [0, 1] and € > 0, then
VneN* 3k,e[1,2"] |z € Lk,
As f is continuous,
3 >0[Vyel01], ly—z[<d = [f(y) - fl@)| <€

So for ngx < § when n > In, (3) we have that

0< flz) = su(s) = max(f(z) = fly)) < €
Hence the conclusion follows by monotone convergence.
For real valued functions, the result is generalized by splitting the integral into positive and
- negative parts and using the linearity of the Lebesgue and the Riemann integrals.
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This result can be generalized for a more general class of functions. Indeed it is still true if
f :[a,b] — R if Riemann integrable and bounded. Then one can prove that

e [({x €[a,b] | fis not continuous at x}) =0
e 3 f: [a,b] — R measurable such that f=flae

° fis Lebesgue integrable and

Results also holds for generalized Riemann integrals.
The next results are applications of the dominated convergence theorem.

In the following we consider a function

(X,d) x (E,A,u) — R
(z,y) = flz,y)

where (X, d) is a metric space and (E, A, p) is a measured space. Then denote

f:

(X,d) — R

Fioo - gf(:c,y)du(y)

F is called a parameter-dependent integral, here the parameter is the variable x.

We introduce a notation for the sections of f: Vx € X,

(B,Ap) — R

flo o), = f(z,y)
and Yy € F,
. (X,d) — R
flo:9) (@,y) — flz,y)

so that F(z) = ;f(x, o)dy.

— Theorem VI1.2: Continuity of parameter-dependent integrals

If

e f is continuous with respect to x p-a.e. on E:

for p-a.e. ye E, f(e,y) e C°(X,R)

e f is measurable with respect to y on X:

Vo e X, f(x,e) is measurable
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e 3 ¢g: F — R, p-integrable such that

Vz e X, for p-ae. y € E, |f(z,y)] < g(y)

then F € C°(X,R).

— Proof:

Let x € X, F(z) is well defined and real valued as f(z,e) is u-integrable due to the last
assumption.

Let (z,)nen € X such that x,, — x. Denote
n—0o0

Yye E, fuly) = f(zn,y)

then for p-a.e. ye E, f,(y) — f(z,y) as f is continuous with respect to z. Finally,
n—00

VneN, |ful <g

so by the dominated convergence theorem

i () = lim, [ fu(0)dn(v) = [ £(o.9)duty) = @)

n—00 n—0o0
] E E

— Example V1.3: Continuity of the Fuler gamma function
We define V x > 0,

[(x) = Jyx_le_ydy

Ry

this is a well-defined and positive function known for being a continuous extension of the
factorial as is satisfies

Ve >0, I'(x+1) = 2T (2)

hence Vn € N*, T'(n) = (n — 1)!. We can use the previous theorem the verify that this is
indeed a continuous function.

We prove a that I' is continuous on every interval [a,b] < R% so it is continuous on R . In
this case we have

R*xR, - R
N

Ty - ple
To apply to previous result we verify that

e f is continuous with respect to  on R* so f is continuous with respect to x l-a.e. on
R, (f have a discontinuity at y = 0 if and only if x < 1, but {({0}) = 0).
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e f is measurable with respect to y on [a, b] as it is continuous.

e Vz e [a,b], VyeR,,

1f(@,9)] =y e <y My + P eV = g(y)

% where ¢ is integrable on R,.

— Theorem VI1.4: Differentiability of parameter-dependent integrals

Assume that X = ]a,b[ and
e [ is measurable with respect to y on |a, b[
e dxg € Ja,b[ | f(e,yo) is p-integrable
e f is differentiable with respect to x p-a.e. on E

e 3 g: E+— R, p-integrable such that

V€ a,b[, for p-ae. ye E,

%(af,y)‘ < g(y)

then f is integrable with respect to y on |a,b[, and F is differentiable with

Vo e Ja, b , F'(z) = J%(:v, y)dp(y)

— Proof:

By the mean value theorem, Vx € |a, [, for p-a.e. y € E,
[f(z,y) = f(z0,y)| < |z — 0| g(y) < (b—a)g(y)
thus by the triangular inequality,

|f(z,y)| < (b—a)g(y) + f(xo,y)

and as the right hand side is p-integrable in y, f(z, ) is p-integrable.

X

©(y)
T — T,

Y

=hn(y) (measurable)
As f is differentiable with respect to x, for p-a.e. y € FE,

) = D)

n—w 0T
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Let z,€la, b] and (z,)nen S ]a, b \ {z}, such that x,, — =z, then by linearity of the integral,
n—00




Using again the mean value theorem, we get that |h,| < g p-a.e., so by the dominated
convergence theorem, Vz € |a, b|,

F (o) = i T =T [y LD 2T ) = [y
3 E E

— Example V1.5: Differentiability of the Fuler gamma function

With the same notations as in the previous Example VI.3, since

%(%y) = In(y) f(z,y)

and

'%@@}wmwﬂw

with [In| g integrable on Ry we have that Vz € R%

wm=fm@Wﬂﬂ@

% Rt

— Theorem VI1.6: Change of variable for the push-forward measure

Let f: (E, A, u) — (F,B) measurable, we define the push-forward measure of u by f,
VM e A by

Fep(M) = p (f~1(M))

If g : (F3) — R is measurable then,

fgd(f*u) = fg o fdu

E

Informally this is a change of variable if one defines y == f~'(z),z = f(y) as

§ fg(:v)du (f ) = f 9(f(y)du(y)”

P E

Proof:

First, we verify that f,u is a measure as

T (2)=o
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and for (M,)nen € B disjoints,

f_l <|_|Mn) = |_| f_l(Mn)

Let M € 3, noticing that 1;-1(3;) = 137 o f, we obtain the desired formula for an indicator
function:

fﬂMdf*M = fen(M) = p (f7H(M)) = fﬂfl(M)dﬂ = J]IM o fdp
F E E
¢ the result is then generalized to measurable functions by linearity and monotone convergence.
— Remark VI.7: Link with probability theory
A measured space (€2, F, P) is called a probability space if P(£2) = 1. In this case we say that
e () is the sample space (the space of all outcomes)
e F is the set of all events
e P is a probability

Let A e F, P(A) is the probability of the event A < .
A random real variable on (€2, F,P) is a measurable function X : Q@ — R. The law of X is
then Px = X,P. It is a probability on (R, B(R)) as

Px(R) =P (X7'(R)) =P(Q) =1
Given an event E € B(R), in probability, we usually denote (X € E) == X '(E) so that
P(X € E) = Px(E) = P(X"(E))

Let g be a real measurable function, then the push-forward formula provides an expression
for the computation of the expectation

E[go X] = Jg o XdP = !g(m)dpx(x)

which is convenient to compute expectations as a real integral.
We say that the law Py has a density fx : R — R, if

VE € B(R),Px(E) - ffx(x)dx

and in this case expectations can be computed with real integral with respect to the Lebesgue
measure since

Elg o X] = | o)/ (z)da

R
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Indeed, this follows from the fact that VE € B(R),

[1e)ipx (@) = apx(i J fx(a f 2(2) f(@)ds

R
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VII Annexes

VII.1 Completion of measures

1.

2.

3.
4.

Prove that A" < a(A U N,).
Prove that A U N, € A"
Prove that A" is a o-Algebra over E.

Conclude that o(A U N,) = A".

Let M € o(A U N,), we choose 3Ny, Ny € A|[N; € M < N, and p1(No\N;) = 0 according to

the definition of A".

d.

Verify that p(Ny) = pu(Ng).
We define
(M) = p(Ny) = p(Na).
Verify that 7w is well defined, i.e. that its definition is independent of the choice of

10.

measurable sets Ny, Ns.
Prove that 1 is a measure on (E,,Tlu).
Prove that i is the only measure extending p on (E , Zu)

Verify that the measured space (E,?lu,ﬁ) is complete, i.e. contains all the p-negligible
sets.

Prove that (E VA ﬁ) is the smallest complete extension of (F,.A, u). Precisely, you need
to verify that if (E,B,n) is a complete measured space such that A < B and 14 = p then
A" ¢ B.

VII.2 From outer measures to measures
Let A, B e A and N < P(E).

1.

2.

3.

Prove that

p'(N)=p*(NNnAnB)+pu*(NnAn B + u*(N n A°n B) + u*(N n A° n BY)

Apply this to N n (A U B) instead of N.

Deduce that AZ is closed under union.
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4. Prove that if A n B = ¢ then

pr(Nn(AuB))=p"(NnA)+pu*(NnB)

5. Generalize the previous result by induction.

6. Prove that A} is non-empty and closed under complement.

7. Construct a two by two disjoint sequence (A, )nen S A such that

Vn € N,OAi = OMZ
i=0 i=0

8. Prove that Vn € N

p*(N) = Zn:u*(NmAi) + u* (Nm (UM1> >

1=0 ieN

9. Prove that

neN neN

wr(N) = p (N ~J Mn> + (N A (U Mn> > (VIL1)
10. Conclude that A7 is a o-algebra

Now, assume that (M, ).en S A3 is two by two disjoint.

11. Prove that ,u"’:4* is o-additive by choosing
L

N =] M,

neN
inside (VIL.1).
12. Conclude that u|* o is a measure.

13. Prove that A} is complete.
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