Mean-field limit of the Bose-Hubbard model in
high dimension

Périce Denis
dperice@constructor.university

Joint work with: Shahnaz Farhat and Soren Petrat
Séminaire "Problémes Spectraux en Physique Mathématique"
Institut Henri Poincaré

20/10,/2025

Abstract

The Bose-Hubbard Hamiltonian effectively describes bosons on a lattice with on-site interactions
and nearest-neighbour hopping, serving as a foundational framework for understanding strong
particle interactions and the superfluid to Mott-insulator transition. In the physics literature,
the mean field theory for this model is known to provide qualitatively accurate results in three
or more dimensions. In this talk, I will present results that establishes the validity of the
mean-field approximation for bosonic quantum systems in high dimensions. Unlike the standard
many-body mean-field limit, the high-dimensional mean-field theory exhibits a phase transition
and remains compatible with strongly interacting particles.

Motivations
Study: large system of quantum bosons
Usually [3]: many-body N — o0 mean field:
Hy = i (—A;) + L Z w(X; — X;) acting on L*(R?,C)®+V
: i=1 TN 1<i<j<N Z ’ i 7

Statistical description of the interaction for a mean particle ¢ € L*(R?) :

h%p

Hartree

— At gl e
Bose-Hubbard model: interacting bosons on a lattice

e Great success in physics:
Mott-insulator \ Superfluid phase transition, experimental observation [2] & theoretical
description of the mean field theory [1]



e Mean field justified when d — oo and effective in d = 3

e Simple mathematical description

Goals:

e Mean field limit as d — o of the dynamics and the ground state energy
e Describe a phase transition

e Strong and local particle interactions

Bose-Hubbard model
Lattice: A = (Z/LZ)" with d, L € N such that d, L > 2 of volume |A| = L¢
One-lattice-site Hilbert space: (?(C) of canonical basis |n) = (0,...,0, 1 0,...),neN

—
nthindex
2"l quantization: creation and annihilation operators:
al0) =0 VneN* aln):=+nln—-1),
vneN, a'|n) =+v/n+1|n+1)
[a,aT] =1 (CCR)
Particle number: N = a'a
Fock space:
F = (C)®¥N =~ 7, (L*(A,C)) = @ L*(A,C)%+"
neN
Indeed:

Fi (L*(A,C)) = Fy (@ c) &) F(C) = 2(C)®M

TEA TEA

If A is an operator on ¢*(C) and x € A denote A, the operator on F acting on site = as A and
as identity on other sites.

Bose-Hubbard hamiltonian of parameters J, u, U € R:

O(d|A)) }n
J
HA = 2d J ,u Z N + — 2 N ) v
z,yeA zeA xeA 7 g
T~y

Mean field with respect to sites interactions and not particle interactions due to large
coordinence number.



Dynamics for 74 € L* (R4, S* (¢2(C)®14)):
i0r7a(t) = [Ha,va(t)] (B-H)

First reduced one-lattice-site density matrix:

o _ 1
Vg = TA| Z Tra\ oy (Va)

TEA

Mean field theory
Mean field hamiltonian for ¢ € £2(C):
U
he = —J(apa + aza’ — |a@\2) + (J — N + 5/\/'(/\/'— 1) with a, = (p.ap)

mean field energy:

Engl) = =T ol + (7 = 1) o, N ) + 5 (o, NV = 1))

Phase transition: Decompose

N
@Z:ZAn|n>:>ag@:Z\/m)\_n>\n+l AU

neN neN

e Mott Insulator (MI): o, = 0
It J=0,

Emp(y) = % <<,0,N (N— (1 + 2%)) (,0>

~

o e M l
minimal at N'= T3

e Superfluid (SF): o, > 0
If J — oo, by Cauchy-Schwarz

2 2 2
o |” < llellez llasplly = (@, Nop)

optimal when

J
)7
‘a@| = <()07N()0> U
Dynamics: Figure 1: Mott insulator \ Superfluid phase
. diagram obtained by minimizing E,,; [1]
i0ip(t) = h*Vp(t),  py = ) (] (mf

Main result



— Theorem .1: S.Farhat D.P S.Petrat 2025 [4]

Assume
e 4 solves (B-H) with ~4(0) € £! (F) such that Tr (74(0)) = 1
e ¢ solves (mf) with p(0) € £2(C) such that ||p], =1

e dcq,co > 0 such that Vn € N,

n n

Tr (pSD(O)]]-/\/=n) < 016_5 Tr (7((11) (O)]l,/\/'zn) < 016_5_

Then 3 C == C (J, ¢, ¢2, Tr (p,(0)N)) > 0 such that ¥t € Ry,

| @ = o)

El

CE+1) /o 1
< et C(t+1) , /In(d) (H%Erl)m) —p¢(0)‘ - T dl—n(d)>

1£ |[147(0) = p, (0)

oo @ (é), then Vt e R,

< 2etec(t+1>q/ln(d)—ln(d) 50

L1 d—o0

|80 = pa()]

e Proof relies on propagation of moments of N

Article has another result without the double exponential in ¢t working with less assumptions
on initial moments but requiring U > 0

Well-posedness of the mean field equation treated

Further works: improve error with corrections to the dynamics to get something small
when d = 3

e WIP ground state energy: if J, u > 0,U > 0, then

In(d)? . (¥a, Hathy) .
g S T T d Bar(e) <O
loall=1 fol=1

Convergence of the order parameter: since a < N + 1 Insert a cut-off
T (7§"a) = Tr (py0)

1
< H(%(l)_p“")a o

< || (08 =pe) aW + )7 W+ ) vt |+ [ (87 =) VDTV D) |

<M Hm(f) — Py

P <fyfl1)(/\/+ 1)]1N>M> + Tr (pp (N + Dlnnr)

R
—0 when M —a0 since the particle numbers are conserved



Any choice of M >» 1 such that M H%(ll) — Py

< 1 as d — oo is sufficient to prove that
c

— 0

L1 d—oo

|68 =re)a

Sketch of the proof
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e Propagation of moments of \:

T (po(DA™) < (Tr (a(OJN*) + 1F) 704,
and same for Tr (%(ll)(t) Nk)

e Gronwall estimate tentative

1 1
o/ Tr (76(11)q¢)‘ <C|Tr (fyél)q¢> + Tr (vél)qSD) *Tr (7&1)% (N + 1) qw) *4d!

~
Insert cut-off Ty psr+I =0

since

H%(ll) — Dy <A |Tr (,yél)q@)

El
e Controlling large N terms

Tr (/yc(ll)qu (N+ ]_) 1N>Mq¢) < 66’(t+1)_M67C(t+1) S0

M—o0

e Close Gronwall and optimize in M.
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