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Problem definition

Model :
We consider spinless fermions in a 2D plane with perpendicular
uniform magnetic field in a confining potential.

Mean field scaling Hamiltonian :

N

j=1
acting on L2, (R?N) := AN [2(R?)
Large magnetic field limit :

B
N—>oo,B—>oo,N—>oo (2)
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Approximate energy functional

Sl = [ Vot [[ L swlx—yptn)day @)

we define :
> EY = inf {(Wy|Hy|Wn), Wy € L2, (R2V), (Wy|Wy) = 1}
> gglass = inf {5c/ass[p],p >0, fRz P = 1}

Theorem 1 : Convergence in large magnetic field limit

If V(x) — oo, w > 0, and some regularities assumptions on
|x]—00
potentials V and w, we have in the large magnetic field limit :

E} — NB
E(N) = NT — g(?lass (4)
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Mean field scaling
Characteristic lengths :

> N_%, linked to the particle density
> /g, the magnetic length, defined by : Ié =B
1
The square ratio is % = %
B
Example :

Model for a neutral atom of atomic number Z = N :

N z 1
H=Y (o) B

1<i<j<N

Other scaling with B := % and h = N~1/2:

2

N
B
—ihV; — Ex.l

H
oy

j=1

J

1<i<j<N

(6)
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Landau levels

We focus on the kinetic part of the Hamiltonian :
N 2 N i\ 2
B s
0 __ . 1 _ X
H = :([—fvj—zxj} )—Eﬂ i@) (7)
Jj=1 Jj=1

Classical phase space :
(n,R) € N x R?
-> we decompose the position operator : r = R + R, with :
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Cyclotron orbit quantization

> R represents the cyclotron orbit part

» For one particle, we have the Landau level quantization :

1
HY = 2B (aTa - 2) 9)
with :
R — iR, R+ iR o
=Ty Rt iy satisfying  [a,al] =1
ﬁ/B \@/B
(10)
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Guiding center quantization
R represents the guiding center of the orbit :

_RtiR, , _R—iR,

bt x Yy
V2Ig V2Ig

satisfying  [b, b1] =1

We have the Hilbert basis :

_ at"pt"” _ bt at"
(pnm - \/WSDOO - \/WQOOO

where g is Gaussian

We can now define the projectors :

> projector on nLL : M, = >~ 0 [@nm) (©nml

(11)

(12)

» space localisation : I, g(x,y) = g(x — R)M,(x — y)g(y — R)

Resolution of identity : >0 (M, =1 and > )" [T r =1
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Energy functional
Let 'y be a density matrix on L2, (R2N), with 'y,(vl) and 'y,(\f) its

asym
first and second reduced densities.

The energy is :
1
Enlr] = Tr(myy)) + 5 Tr(wyy) (13)

We define the Husimi functions :
> m(l)(n, R) := Tr(I'ImR*y,(Vl))

> m®(ny, Ry; mp, Ry) :=Tr <(ﬂ”17R1 @ n”2’R2)7’(V2))

with p(x) = ’)//(VI)(X7X), we have

p= Z mM(n,.) + error term (14)
n=0
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Enlln] :i28 (n + ;) /R2 m®)(n, x)dx
+ NZ/ (x)m™M (n, x)dx

+ = Z / w(x — m(2 )(nl,x ny, y)dxdy + error terms

2 2
n1 no R2 xR

(15)

» We make the mean field approximation : m®®? = m®) @ m(®)

» Bring back quantum aspects with semi-classical approximation
> m satisfy the Pauli principle 0 < m®(n,R) < B

» By subtracting LLL energy, in the large magnetic field limit :

1
Eclasslp] = / Vp+ - / p(x)w(x — y)p(y)dxdy + error terms
R2 2 Jr2xR2
(16)
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De Finetti Theorem

» Rigorous justification for mean field assumption
> A symmetric probability measure of many variables is almost
sum of decorrelated probabilities
Theorem 3 : (Hewitt-Savage)

Let u € Ps(QV), a symmetric probability measure, there exist a
probability measure P, € P(P(Q2)) such that :

vne N = [ o, (p) (17)
PEP(Q)

where (") is the n" marginal of 4
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Lieb variational principle

> Let h and w be the one body and two body operators in Hy
> Let 1 be a one particle density matrix

We define :

> az,wi 2, W) = (2, 2w, w) — (2 W) (w; 2)

» Eur(m) = Tr(hy) + %TF(W")’Q)
> This equations are satisﬁed if o] and ~ are the reduced densities
of a Slater determinant : En(y )) = Enr(y 1))

Theorem 2 : Lieb's variational principle
If v1 is a positive operator of trace N such that v; < 1, then :

EY < Enr(m) (18)
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Main steps in the proof of theorem 1

Upper bound :

> With pciass minimizing Eqjass, We build the test state :

. N R
= Z/ (. R, rdR with ~(n, R) = e B)5,
n=0 R2
(19)
where 7(n, R) is the filling factor : local density at R in nLL
divided by maximum density

» With Lieb variational principle, using w > 0,

lim E(N) < Eciass(py,)  where  py (x) =n(x, x)  (20)

0
class!®

» Varying g, Eclass(p+,) can be made arbitrary close to £
and therefore :
lim E(N) < &2 (21)

class
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Lower bound :
Let (F'y)nen be a minimizing sequence of lim E(N)

» Due to the confining assumption on potentials, we can extract
a weakly* convergent sequence

» With a Fatou inequality :

i inf [ w(x =)+ VE) + Vo) (y) - (22)

> / [w(x = y) + V(x) + V(y)] dpP(x, y)
R2 xRR2

» Then, with De Finetti theorem PSV = [p€73' k2) p“2dP,(p), so

lim E(N) (23)
2o [ e ) VO V) dPu)
pEP(R2) JR2xR2
(24)
2 gclass
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Prospects

Explore a weaker magnetic field limit : lim % € R is finite

> Several Landau levels are partially filled

» With a strong confining : V = oo outside of a bounded domain
» With a weaker confining : V(x) — oo

|x]—o0
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