Mean field limit for 2D fermions in large magnetic field

Denis Périce

Internship advisor: Nicolas Rougerie

LPMMC

27/05/2020

Problem definition

Model:

We consider spinless fermions in a 2D plane with perpendicular uniform magnetic field in a confining potential.

Mean field scaling Hamiltonian:

$$H_N := \sum_{j=1}^N \left(\left[-i\nabla_j - \frac{B}{2} x_j^{\perp} \right]^2 + NV_j \right) + \sum_{1 \le i < j \le N} w_{ij} \qquad (1)$$

acting on $L^2_{asym}(\mathbb{R}^{2N}) := \bigwedge^N L^2(\mathbb{R}^2)$

Large magnetic field limit:

$$N \to \infty, B \to \infty, \frac{B}{N} \to \infty$$
 (2)

Approximate energy functional

$$\mathcal{E}_{class}[\rho] = \int_{\mathbb{R}^2} V \rho + \frac{1}{2} \iint_{\mathbb{R}^2 \times \mathbb{R}^2} \rho(x) w(x - y) \rho(y) dx dy \qquad (3)$$

we define:

- $\blacktriangleright \ E_N^0 := \inf \left\{ \left< \Psi_N | H_N | \Psi_N \right>, \Psi_N \in L^2_{asym}(\mathbb{R}^{2N}), \left< \Psi_N | \Psi_N \right> = 1 \right\}$
- $lacksymbol{\mathcal{E}_{class}^0}:=\inf\left\{\mathcal{E}_{class}[
 ho],
 ho\geq0,\int_{\mathbb{R}^2}
 ho=1
 ight\}$

Theorem 1: Convergence in large magnetic field limit

If $V(x) \to \infty$, $w \ge 0$, and some regularities assumptions on $|x| \to \infty$

potentials V and w, we have in the large magnetic field limit :

$$E(N) := \frac{E_N^0 - NB}{N^2} \to \mathcal{E}_{class}^0 \tag{4}$$

Mean field scaling

Characteristic lengths:

- $ightharpoonup N^{-\frac{1}{2}}$, linked to the particle density
- ▶ I_B , the magnetic length, defined by : $I_B^2 = B^{-1}$

The square ratio is $\frac{\frac{1}{N}}{l_{z}^{2}} = \frac{B}{N}$

Example:

Model for a neutral atom of atomic number Z = N:

$$H = \sum_{i=1}^{N} \left(-\Delta_i - \frac{Z}{|x_i|} \right) + \sum_{1 \le i < j \le N} \frac{1}{|x_j - x_i|}$$
 (5)

Other scaling with $\tilde{B}:=\frac{B}{\sqrt{N}}$ and $\hbar=N^{-1/2}$:

$$\frac{H_N}{N} = \sum_{j=1}^N \left(\left[-i\hbar \nabla_j - \frac{\tilde{B}}{2} x_j^{\perp} \right]^2 + V_j \right) + \frac{1}{N} \sum_{1 \le i < j \le N} w_{ij} \qquad (6)$$

Landau levels

We focus on the kinetic part of the Hamiltonian :

$$H_N^0 = \sum_{j=1}^N \left(\left[-i\nabla_j - \frac{B}{2} x_j^{\perp} \right]^2 \right) = \sum_{j=1}^N \left(\frac{\pi_x^j}{\pi_y^j} \right)^2 \tag{7}$$

Classical phase space:

$$(n,R) \in \mathbb{N} \times \mathbb{R}^2$$

 \rightarrow we decompose the position operator : $r = R + \tilde{R}$, with :

$$\tilde{R} := \frac{I_B^2}{\pi} \wedge \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \tag{8}$$

Cyclotron orbit quantization

- $ightharpoonup \tilde{R}$ represents the cyclotron orbit part
- For one particle, we have the Landau level quantization :

$$H_1^0 = 2B\left(a^{\dagger}a + \frac{1}{2}\right) \tag{9}$$

with:

$$a^{\dagger} = rac{ ilde{R}_{x} - i ilde{R}_{y}}{\sqrt{2}I_{B}}$$
 $a = rac{ ilde{R}_{x} + i ilde{R}_{y}}{\sqrt{2}I_{B}}$ satisfying $[a, a^{\dagger}] = \mathbb{1}$ (10)

Guiding center quantization

R represents the guiding center of the orbit :

$$b^{\dagger} = rac{R_{\mathsf{X}} + iR_{\mathsf{y}}}{\sqrt{2}I_{\mathsf{B}}}$$
 $b = rac{R_{\mathsf{X}} - iR_{\mathsf{y}}}{\sqrt{2}I_{\mathsf{B}}}$ satisfying $[b, b^{\dagger}] = \mathbb{1}$ (11)

We have the Hilbert basis:

$$\varphi_{nm} = \frac{a^{\dagger n} b^{\dagger m}}{\sqrt{n! m!}} \varphi_{00} = \frac{b^{\dagger m} a^{\dagger n}}{\sqrt{n! m!}} \varphi_{00} \quad \text{where } \varphi_{00} \text{ is Gaussian} \quad (12)$$

We can now define the projectors :

- projector on nLL : $\Pi_n := \sum_{m=0}^{\infty} |\varphi_{nm}\rangle \langle \varphi_{nm}|$
- ▶ space localisation : $\Pi_{n,R}(x,y) = g(x-R)\Pi_n(x-y)g(y-R)$

Resolution of identity: $\sum_{n=0}^{\infty} \Pi_n = 1$ and $\sum_{n=0}^{\infty} \int_{\mathbb{R}^2} \Pi_{n,R} = 1$

Energy functional

Let Γ_N be a density matrix on $L^2_{asym}(\mathbb{R}^{2N})$, with $\gamma_N^{(1)}$ and $\gamma_N^{(2)}$ its first and second reduced densities.

The energy is:

$$\mathcal{E}_{N}[\Gamma] := \operatorname{Tr}(h\gamma_{N}^{(1)}) + \frac{1}{2}\operatorname{Tr}(w\gamma_{N}^{(2)}) \tag{13}$$

We define the Husimi functions:

$$ightharpoonup m^{(1)}(n,R) := \text{Tr}(\Pi_{n,R}\gamma_N^{(1)})$$

$$\qquad \qquad m^{(2)}(n_1, R_1; n_2, R_2) := \mathsf{Tr}\left((\Pi_{n_1, R_1} \otimes \Pi_{n_2, R_2}) \gamma_N^{(2)} \right)$$

with $\rho(x) = \gamma_N^{(1)}(x, x)$, we have

$$\rho = \sum_{n=0}^{\infty} m^{(1)}(n,.) + \text{error term}$$
 (14)

$$\mathcal{E}_{N}[\Gamma_{N}] = \sum_{n=0}^{\infty} 2B \left(n + \frac{1}{2} \right) \int_{\mathbb{R}^{2}} m^{(1)}(n, x) dx$$

$$+ N \sum_{n=0}^{\infty} \int_{\mathbb{R}^{2}} V(x) m^{(1)}(n, x) dx$$

$$+ \frac{1}{2} \sum_{n_{1}, n_{2}} \int_{\mathbb{R}^{2} \times \mathbb{R}^{2}} w(x - y) m^{(2)}(n_{1}, x; n_{2}, y) dx dy + \text{error terms}$$
(15)

- lacktriangle We make the mean field approximation : $m^{(2)}=m^{(1)}\otimes m^{(1)}$
- ▶ Bring back quantum aspects with semi-classical approximation
- \rightarrow m satisfy the Pauli principle $0 \le m^{(1)}(n,R) \le B$
- ▶ By subtracting LLL energy, in the large magnetic field limit :

$$\mathcal{E}_{class}[\rho] = \int_{\mathbb{R}^2} V\rho + \frac{1}{2} \int_{\mathbb{R}^2 \times \mathbb{R}^2} \rho(x) w(x - y) \rho(y) dx dy + \text{error terms}$$
(16)

De Finetti Theorem

- Rigorous justification for mean field assumption
- ► A symmetric probability measure of many variables is almost sum of decorrelated probabilities

Theorem 3: (Hewitt-Savage)

Let $\mu \in \mathcal{P}_s(\Omega^{\mathbb{N}})$, a symmetric probability measure, there exist a probability measure $P_{\mu} \in \mathcal{P}(\mathcal{P}(\Omega))$ such that :

$$\forall n \in \mathbb{N}, \mu^{(n)} = \int_{\rho \in \mathcal{P}(\Omega)} \rho^{\otimes n} dP_{\mu}(\rho)$$
 (17)

where $\mu^{(n)}$ is the n^{th} marginal of μ

Lieb variational principle

- \blacktriangleright Let h and w be the one body and two body operators in H_N
- Let γ_1 be a one particle density matrix

We define:

- $ightharpoonup \mathcal{E}_{HF}(\gamma_1) := \operatorname{Tr}(h\gamma_1) + \frac{1}{2}\operatorname{Tr}(w\gamma_2)$
- → This equations are satisfied if γ_1 and γ_2 are the reduced densities of a Slater determinant : $\mathcal{E}_N(\gamma_N^{(1)}) = \mathcal{E}_{HF}(\gamma_N^{(1)})$

Theorem 2: Lieb's variational principle

If γ_1 is a positive operator of trace N such that $\gamma_1 \leq 1$, then :

$$E_N^0 \le \mathcal{E}_{HF}(\gamma_1) \tag{18}$$

Main steps in the proof of theorem 1

Upper bound:

• With ρ_{class} minimizing \mathcal{E}_{class} , we build the test state :

$$\gamma_1 := \sum_{n=0}^{\infty} \int_{\mathbb{R}^2} \tau(n, R) \Pi_{n, R} dR \text{ with } \tau(n, R) := \frac{N \rho_{class}(R)}{B} \delta_{0n}$$
(19)

where $\tau(n,R)$ is the filling factor : local density at R in nLL divided by maximum density

▶ With Lieb variational principle, using $w \ge 0$,

$$\lim E(N) \leq \mathcal{E}_{class}(\rho_{\gamma_1})$$
 where $\rho_{\gamma_1}(x) = \gamma_1(x, x)$ (20)

▶ Varying g, $\mathcal{E}_{class}(\rho_{\gamma_1})$ can be made arbitrary close to \mathcal{E}^0_{class} , and therefore :

$$\lim E(N) \le \mathcal{E}_{class}^0 \tag{21}$$

Lower bound:

Let $(\Gamma_N)_{N\in\mathbb{N}}$ be a minimizing sequence of $\lim E(N)$

- ▶ Due to the confining assumption on potentials, we can extract a weakly* convergent sequence
- ► With a Fatou inequality :

$$\lim \inf \int_{\mathbb{R}^2 \times \mathbb{R}^2} \left[w(x - y) + V(x) + V(y) \right] d\rho_N^{(2)}(x, y)$$
 (22)

$$\geq \int_{\mathbb{R}^2 \times \mathbb{R}^2} \left[w(x - y) + V(x) + V(y) \right] d\rho^{(2)}(x, y)$$

► Then, with De Finetti theorem $\rho_N^{(2)} = \int_{\rho \in \mathcal{P}(\mathbb{R}^2)} \rho^{\otimes 2} dP_{\mu}(\rho)$, so :

$$\lim E(N) \tag{23}$$

$$\geq \frac{1}{2} \int_{\rho \in \mathcal{P}(\mathbb{R}^2)} \int_{\mathbb{R}^2 \times \mathbb{R}^2} \left[w(x - y) + V(x) + V(y) \right] d\rho^{\otimes 2}(x, y) dP_{\mu}(\rho) \tag{24}$$

$$\mathcal{E}_{class}^{0}$$

Prospects

Explore a weaker magnetic field limit : $\lim \frac{B}{N} \in \mathbb{R}$ is finite

- → Several Landau levels are partially filled
 - lacktriangle With a strong confining : $V=\infty$ outside of a bounded domain
 - ▶ With a weaker confining : $V(x) \to \infty$ $|x| \to \infty$

References

S. Fournais, M. Lewin, and J-P. Solovel.

The semi-classical limit of large fermionic systems.

arXiv:1510.01124, 2015.

S. Fournais and P. Madsen.

Semi-classical limit of confined fermionic systems in homogeneous magnetic fields.

arXiv:1907.00629, 2019.

E. H. Lieb, J-P. Solovej, and J. Yngvason.

Ground states of large quantum dots in magnetic fields.

Phys. Rev. B, 51:10646-10665, Apr 1995.

E. H. Lieb and R. Seiringer.

The stability of matter in quantum mechanics.

2008.

N. Rougerie and J. Yngvason.

Holomorphic quantum hall states in higher landau levels.

arXiv:1912.10904, 2019.

- N. Rougerie
 - Théorèmes de De Finetti, limites de champ moyen et condensation de Bose-Einstein.
 - hal-01060125v4, 2014.
- E. H. Lieb J-P. Solovej Quantum Dots
 - arXiv:cond-mat/9404099v1, 1994.
- E. H. Lieb
 - Variational Principle for Many-Fermion Systems Phys. Rev. Volume 46, 1981, Number 7
- T. Champel and S. Florens.
 - Quantum transport properties of two-dimensional electron gases under high magnetic fields
 Phys. Rev. B, 75 (2007), p. 245326.
- Eugene A. Feinberg, Pavlo O. Kasyanov, Nina V. Zadoianchuk T. Champel and S. Florens.
 - Fatou's Lemma for Weakly Converging Probabilities arXiv:1206.4073v3. 2012.